精英家教网 > 高中数学 > 题目详情
13.若|$\overrightarrow{a}$|=3,与|$\overrightarrow{b}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$之间夹角为60°,且(3$\overrightarrow{a}$+5$\overrightarrow{b}$)⊥(m$\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=(  )
A.$\frac{23}{32}$B.$\frac{23}{43}$C.$\frac{29}{42}$D.$\frac{21}{10}$

分析 运用向量的数量积的定义,通过向量$\overrightarrow{a}$与$\overrightarrow{b}$的数量积,再由向量垂直的条件,列出方程,化简整理即可求出m.

解答 解:∵|$\overrightarrow{a}$|=3,与|$\overrightarrow{b}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$之间夹角为60°,且(3$\overrightarrow{a}$+5$\overrightarrow{b}$)⊥(m$\overrightarrow{a}$-$\overrightarrow{b}$),
∴(3$\overrightarrow{a}$+5$\overrightarrow{b}$)•(m$\overrightarrow{a}$-$\overrightarrow{b}$)=3m${\overrightarrow{a}}^{2}$$+(5m-3)\overrightarrow{a}•\overrightarrow{b}$$-{5\overrightarrow{b}}^{2}$=0,27m+(5m-3)×$3×2×\frac{1}{2}$-20=0,
∴42m-29=0,
∴m=$\frac{29}{42}$.
故选:C.

点评 本题考查向量的数量积的定义,向量垂直的条件,考查基本的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在(1+2x)5的展开式中,x3的系数为80.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.方程$\frac{x|x|}{4}$+y|y|=-1确定的曲线即为y=f(x)的图象,对于函数f(x)有如下结论:
①f(x)单调递增;
②函数g(x)=2f(x)+x不存在零点;
③f(x)的图象与h(x)的图象关于原点对称,则h(x)的图象就是方程$\frac{y|y|}{4}$+x|x|=1确定的曲线;
④f(x)的图象上的点到原点的最小距离为1.
则上述结论正确的是②④(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{2}$sin(ωx+φ)+2(ω>0,0<φ<π),满足f(x)在区间[a,b](b>a)上是单调函数,其中b-a的最大值为4,且当x=1时函数f(x)有最大值.
(1)求函数f(x)的解析式;
(2)求f(1)+f(2)+…+f(2015)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,an=2an-1+n(n>1,n∈N*).
(1)若a1=1,求a2,a3,a4
(2)若{an}为等差数列,求{an}的通项公式;
(3){an}能否为等比数列?若是,求其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若角α的终边经过点$(\sqrt{5},-2)$,则sinα等于多少(  )
A.$\frac{2}{3}$B.$\frac{{\sqrt{5}}}{3}$C.$-\frac{2}{3}$D.$-\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下图所示的圆锥的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=tanx,则$f'(\frac{π}{3})$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等比数列{an}的首项为a1=2015,公比$q=-\frac{1}{2}$.设f(n)表示该数列的前n项的积,则当n=12时,f(n)有最大值.

查看答案和解析>>

同步练习册答案