精英家教网 > 高中数学 > 题目详情
3.在(1+2x)5的展开式中,x3的系数为80.(用数字作答)

分析 由条件利用二项展开式的通项公式求得展开式中x3的系数.

解答 解:在(1+2x)5的展开式中,x3的系数为${C}_{5}^{3}$•23=80,
故答案为:80.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在矩形ABCD中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AD}$|=2,则|$\overrightarrow{BA}+\overrightarrow{BD}+\overrightarrow{BC}$|=(  )
A.12B.6C.4$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域为[-2,2],若对于任意的x,y∈[-2,2],都有f(x+y)=f(x)+f(y),且当x>0时,有f(x)>0.
(Ⅰ)证明:f(x)为奇函数;
(Ⅱ)判断f(x)在[-2,2]上的单调性,并证明;
(Ⅲ)设f(1)=1,若f(x)<logam(a>0且a≠1)对?x∈[-2,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}满足a1=$\frac{1}{2}$,an+1=an2+an(n∈N*),则$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{2015}+1}$的整数部分是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某单位因工作需要,要制作一批操作台面,台面上有两块大小相同的长方形钢化玻璃(图中阴影部分),每块钢化玻璃的面积为1800cm2,每块钢化玻璃需能放置半径为15cm的圆形器皿,每块钢化玻璃周围与操作台边缘要留20cm空白,两块钢化玻璃的间距为50cm,设钢化玻璃长为xcm,操作台面面积为S.
(1)当操作台面长与宽分别为多少时,操作台面面积最小;
(2)若每块钢化玻璃长至少比宽多14cm,则操作台面长与宽分别为多少时,操作台面面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在极坐标系中,若点A、B的极坐标分别为(3,$\frac{π}{3}$),(-4,$\frac{7π}{6}$),则△AOB(O为极点)的面积等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sin(π+α)=$\frac{1}{3}$,则cos2α=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},}&{x>0}\\{-{x}^{2}-2x,}&{x≤0}\end{array}\right.$,若关于x的方程2f2(x)+2af(x)+1=0有6个不同的实数根,则实数a的取值范围是(-$\frac{3}{2}$,$-\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若|$\overrightarrow{a}$|=3,与|$\overrightarrow{b}$|=2,向量$\overrightarrow{a}$与$\overrightarrow{b}$之间夹角为60°,且(3$\overrightarrow{a}$+5$\overrightarrow{b}$)⊥(m$\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=(  )
A.$\frac{23}{32}$B.$\frac{23}{43}$C.$\frac{29}{42}$D.$\frac{21}{10}$

查看答案和解析>>

同步练习册答案