【题目】设a∈R,函数f(x)=x|x﹣a|﹣a.
(1)若f(x)为奇函数,求a的值;
(2)若对任意的x∈[2,3],f(x)≥0恒成立,求a的取值范围;
(3)当a>4时,求函数y=f(f(x)+a)零点的个数.
【答案】
(1)解:∵f(x)在原点有定义,f(x)为奇函数;
∴f(0)=﹣a=0;
∴a=0
(2)解:f(x)=x|x﹣a|﹣a;
∴①若a<2,则x=2时,f(x)在[2,3]上取得最小值f(2)=2(2﹣a)﹣a=4﹣3a;
∴4﹣3a≥0,a≤
;
∴
;
②若2≤a≤3,则x=a时,f(x)取得最小值f(a)=﹣a;
﹣a<0,不满足f(x)≥0;
即这种情况不存在;
③若a>3,则x=3时,f(x)取得最小值f(3)=3(a﹣3)﹣a=2a﹣9;
∴2a﹣9≥0,a
;
∴
;
∴综上得a的取值范围为(﹣∞,
]∪[
,+∞)
(3)解:f(x)+a=x|x﹣a|,令x|x﹣a|=t;
∴y=t|t﹣a|﹣a;
下面作出函数t=x|x﹣a|=
和函数y=t|t﹣a|﹣a=
的图象:
![]()
函数y=t|t﹣a|﹣a的图象可以认为由函数y=t|t﹣a|的图象向下平移a个单位得到;
显然函数y=t|t﹣a|﹣a的左边两个零点t=t1,t=t2都在(0,a)区间上,而通过t=x|x﹣a|的图象可看出:
∵
,∴
;
∴t1,t2分别有三个x和它对应;
∴这时原函数有6个零点;
由t(t﹣a)﹣a=t2﹣ta﹣a=0可以解出
;
∴
;
显然
;
而(a2﹣2a)2﹣4(a2+4a)=a[a2(a﹣4)﹣16];
显然a2(a﹣4)﹣16可能大于0,可能等于0,可能小于0;
∴t3可能和它对应的x个数为3,2,1;
∴此时原函数零点个数为3,2,或1;
∴原函数的零点个数为9个,8个,或7个
【解析】(1)根据f(0)=0即可求出a;(2)讨论a的取值:a<2,2≤a≤3,a>3,三种情况,求出每种情况下的f(x)的最小值,让最小值大于等于0从而求出a的取值范围;(3)代入f(x),原函数变成y=f(x|x﹣a|),这时候换元t=x|x﹣a|,y=t|t﹣a|﹣a.然后画出函数t=x|x﹣a|和函数y=t|t﹣a|﹣a的图象,通过图象找出有几个t使得y=t|t﹣a|﹣a=0,并找出对应的x的个数,从而找到原函数的零点个数.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(x+y)=f(x)·f(y),且f(1)=
.
(1)当n∈N+,求f(n)的表达式;
(2)设an=nf(n),n∈N+,求证:a1+a2+…+an<2.
【答案】(1)
(2)见解析
【解析】
(1)利用f(x+y)=f(x)f(y)(x,y∈R)通过令x=n,y=1,说明{f(n)}是以f(1)=
为首项,公比为
的等比数列求出
;(2)利用(1)求出an=nf(n)的表达式,利用错位相减法求出数列的前n项和,即可说明不等式成立.
(1)解:f(n)=f[(n-1)+1]
=f(n-1)·f(1)=
f(n-1).
∴当n≥2时,
=
.
又f(1)=
,
∴数列{f(n)}是首项为
,公比为
的等比数列,
∴f(n)=f(1)·(
)n-1=(
)n.
(2)证明:由(1)可知,
an=n·(
)n=n·
,
设Sn=a1+a2+…+an,
则Sn=
+2×
+3×
+…+(n-1)·
+n·
,①
∴
Sn=
+2×
+…+(n-2)·
+(n-1)·
+n·
.②
①-②得,
Sn=
+
+
+…+
-n·![]()
=
-
=1-
-
,
∴Sn=2-
-
<2.
即a1+a2+…+an<2.
【点睛】
本题考查数列与函数的关系,数列通项公式的求法和的求法,考查不等式的证明,裂项法与错位相减法的应用,数列通项的求法中有常见的已知
和
的关系,求
表达式,一般是写出
做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.
【题型】解答题
【结束】
22
【题目】设数列{an}的前n项和为Sn.已知a1=a (a≠3),an+1=Sn+3n,n∈N+.
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N+,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示) ![]()
(1)P为边BC上一动点,求
的取值范围?
(2)Q为线段AP1上一点,若
=m
+
,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
,直线
的参数方程为
为参数),直线
和圆
交于
两点,
是圆
上不同于
的任意一点.
(1)求圆心的极坐标;
(2)求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知,y对x呈线性相关关系.
(1) 请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2) 估计使用年限为10年时,试求维修费用约是多少?(精确到两位小数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com