精英家教网 > 高中数学 > 题目详情
7.长方体长,宽,高分别为3,2,$\sqrt{3}$,则长方体的外接球体积为(  )
A.12πB.$\frac{32}{3}$πC.D.

分析 长方体的对角线就是外接球的直径,求出长方体的对角线长,即可求出球的半径,外接球的体积可求.

解答 解:由题意长方体的对角线就是球的直径.
长方体的对角线长为:$\sqrt{9+4+3}$=4
外接球的体积V=$\frac{4}{3}π•{2}^{3}$=$\frac{32}{3}π$
故选B.

点评 本题是基础题,考查长方体的外接球.关键是长方体的对角线就是外接球的直径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.以椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心O为圆心,以$\sqrt{\frac{ab}{2}}$为半径的圆称为该椭圆的“伴随”.
(1)若椭圆C的离心率为$\frac{\sqrt{3}}{2}$,其“伴随”与直线$\sqrt{3}$x+y-2=0相切,求椭圆C的方程.
(2)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于AB两点,射线PO交椭圆E于点Q.
(i)求$\frac{|OQ|}{|OP|}$的值;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了摸清整个江门大道的交通状况,工作人员随机选取20处路段,在给定的测试时间内记录到机动车的通行数量情况如下(单位:辆):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下频数分布表,并作频率分布直方图;
通行数量区间[145,155)[155,165)[165,175)[175,185)[185,195)
频数
(Ⅱ)现用分层抽样的方法从通行数量区间为[165,175)、[175,185)及[185,195)的路段中取出7处加以优化,再从这7处中随机选2处安装智能交通信号灯,设所取出的7处中,通行数量区间为[165,175)路段安装智能交通信号灯的数量为随机变量X(单位:盏),试求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|-1<x<3},B={x|x<a},若A∩B=A,则实数a的取值范围是(  )
A.a>3B.a≥3C.a≥-1D.a>-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若对任意x∈(0,+∞),都有f(x)<2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,则目标函数z=3x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U=A∪B={1,2,3,4,5},A∩(∁UB)={1,2},则集合B=(  )
A.{2,4,5}B.{3,4,5}C.{4,5}D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{3}$cos(3x-θ)-sin(3x-θ)是奇函数,则tanθ等于-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=\frac{lnx}{x}$,则(  )
A.x=e为函数f(x)的极大值点B.x=e为函数f(x)的极小值点
C.$x=\frac{1}{e}$为函数f(x)的极大值点D.$x=\frac{1}{e}$为函数f(x)的极小值点

查看答案和解析>>

同步练习册答案