精英家教网 > 高中数学 > 题目详情
16.在平行四边形ABCD中,O是对角线交点.下列结论中不正确的是(  )
A.$\overrightarrow{AB}$=$\overrightarrow{DC}$B.$\overrightarrow{AD}$+$\overrightarrow{AB}$=2$\overrightarrow{AO}$C.$\overrightarrow{AD}$+$\overrightarrow{CB}$=$\overrightarrow 0$D.$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{BD}$

分析 可画出图形,根据平行四边形的定义,及对角线的关系,以及相等向量的概念,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,便可判断每个选项结论的正误,从而找出正确选项.

解答 解:如图,

A.AB∥DC,且AB=DC,∴$\overrightarrow{AB}=\overrightarrow{DC}$,即该结论正确;
B.$\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}=2\overrightarrow{AO}$,∴该结论正确;
C.$\overrightarrow{AD}+\overrightarrow{CB}=\overrightarrow{AD}+\overrightarrow{DA}=\overrightarrow{0}$,∴该结论正确;
D.根据向量减法的几何意义,$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DB}$,∴该结论错误.
故选D.

点评 考查平行四边形的定义,清楚平行四边形的对角线互相平分,向量加法、减法和数乘的几何意义,向量加法的平行四边形法则,以及相等向量和相反向量的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知a,b,c是互不相等的非零实数,函数f(x)=$\frac{a}{3}{x^3}+b{x^2}$+cx,g(x)=$\frac{b}{3}{x^3}+c{x^2}$+ax,h(x)=$\frac{c}{3}{x^3}+a{x^2}$+bx.利用反证法证明:f(x),g(x),h(x)这三个函数中,至少有一个函数存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$,ω>0,A>0)其部分图象如图所示:
(1)求函数y=f(x)的表达式.
(2)已知等腰三角形ABC中,角A,B,C的对边分别是边a,b,c,且b=c若g(x)=af(x)+2a+b.当x∈[$\frac{π}{2}$,$\frac{4π}{3}$]时,g(x)∈[5,8],求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=log0.5(x2-4)的单调递增区间是(  )
A.(-∞,0)B.(-∞,-2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D、E分别为棱CC1、B1C1的中点,
(1)求A1B与平面ACC1A1所成角的正弦值;
(2)在线段AC上是否存在一点P,使得PE⊥平面A1BD?若存在,确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f ( x )=ln x和g(x)=$\frac{1}{2}{x^2}$+a(其中a为常数),直线l与f ( x ) 和g ( x )的图象都相切,且与f ( x ) 的图象的切点的横坐标为1.
(Ⅰ)求l的方程和a的值;  
(Ⅱ)记h ( x )=f ( x2+1)-g ( x )-ln 2,求函数h ( x ) 的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数y=f(x)在[0,+∞)上的图象如图所示,顶点坐标为(1,-1).
(1)求f(x)在R上的解析式;
(2)若g(x)是定义在R上的奇函数,且当x≥0时,g(x)=f(x),画出g(x)的图象,并求g(x)的解析式;
(3)由图象指出g(x)的单调区间(不需要证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知{an}是递增的等差数列,a3,a5是方程x2-10x+21=0的两个根.
(1)求{an}的通项公式;
(2)若数列{bn-an}为首项为1,公比为3的等比数列,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z=-2+i对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案