精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的单调递增区间;
(2)若函数F(x)=f(x)-x2+3xa上只有一个零点,求实数a的取值范围.
(1)(-,-1)和(,+∞)(2)-2ln 2≤a<2ln 3-2或a=2ln 2-1.
(1)f(x)的定义域为{x|x≠-1}.
f(x)=x2-2x-ln(x+1)2,∴f′(x)=2x-2-
得-x<-1或x
f(x)的单调递增区间是(-,-1)和(,+∞).
(2)由已知得F(x)=x-ln(x+1)2a,且x≠-1,∴F′(x)=1-.
∴当x<-1或x>1时,F′(x)>0;当-1<x<1时,F′(x)<0.
∴当-x<1时,F′(x)<0,此时,F(x)单调递减;
当1<x<2时,F′(x)>0,此时,F(x)单调递增.
F=-+2ln 2+aaF(2)=2-2ln 3+aa,∴FF(2).
F(x)在上只有一个零点?F(1)=0.
-2ln 2≤a<2ln 3-2;
F(1)=0得a=2ln 2-1.
∴实数a的取值范围为-2ln 2≤a<2ln 3-2或a=2ln 2-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若,是否存在a,bR,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数在R上的单调区间;
(III )对于给定的实数成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线f(x)=x2+3x在点A处的切线的斜率为7,则A点坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3+bx2+cx+d在区间[-2,2]上是减函数,则b+c的最大值为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-ln xx∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式恒成立,则正数k的取值范围是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a∈R,若函数y=ex+ax,x∈R有大于零的极值点,则(  )
A.a<-1B.a>-1
C.a>-D.a<-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四图都是在同一坐标系中某三次函数及其导函数的图像,其中一定不正确的序号是(  )
A.①②B.③④C.①③D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5=________.

查看答案和解析>>

同步练习册答案