精英家教网 > 高中数学 > 题目详情
若a、b∈R+,求证:(a+b)(a3+b3)≥(a2+b22
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:将不等式左边展开,运用重要不等式a2+b2≥2ab,即可证明不等式.
解答: 证明:∵(a+b)(a3+b3)=a4+a3b+ab3+b4
=a4+ab(a2+b2)+b4
≥a4+ab•2ab+b4=(a2+b22
当且仅当a=b取等号,
∴(a+b)(a3+b3)≥(a2+b22
点评:本题主要考查不等式的证明,运用综合法证明是常见方法,本题也可运用作差法、向量法等证明,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)在△ABC中,b=2,c=4,A=120°,求tanB;
(2)已知{an}是实数等比数列,且a1=27,a9=
1
243
,求其前6项和S6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(4,3),
b
=(-1,2)
(1)求 
a
b
的角的余弦;
(2)若(
a
b
)⊥(2
a
+
b
),求λ;
(3)若(
a
b
)∥(2
a
+
b
),求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•(1+lnx),(x>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若k(x-2)<f(x)对任意x≥32恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:
关注NBA 不关注NBA 合计
男生 6
女生 10
合计 48
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为
2
3

(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考:
P(K2≥k) 0.10 0.05 0.010 0.005
k0 2.706 3.841 6.635 7.879
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

记Sn是数列{an}的前n项和,且Sn+an=2n+1(n∈N*).
(1)求证:数列{an-2}是等比数列;
(2)求和:S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:1+
1
3
+
1
5
+…+
1
2n-1
2n-1
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O(0,0),A(2,3),B(5,4),C(7,10),若
AP
=
AB
AC
(λ∈R)
(1)是否存在λ,使得点P在第一、三象限的角平分线上?
(2)是否存在λ,使得四边形OBPA为平行四边形?(若存在,则求出λ的值,若不存在,请说明理由.)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,∠ABC=45°,SA=SB,证明:SA⊥BC.

查看答案和解析>>

同步练习册答案