分析 ①利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同班级的基本事件个数,代入古典概型概率公式求出值;
(Ⅱ)随机变量X的所有可能值为0,1,2,3,P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{6}^{3-k}}{{∁}_{10}^{3}}$,(k=0,1,2,3)列出随机变量X的分布列求出期望值.
解答 解:设“选出的3名同学是来自互不相同班级”为事件A,
则P(A)=$\frac{{∁}_{3}^{1}×{∁}_{7}^{2}+{∁}_{7}^{3}}{{∁}_{10}^{3}}$=$\frac{49}{60}$
所以选出的3名同学是来自互不相同班级的概率为$\frac{49}{60}$.
(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{6}^{3-k}}{{∁}_{10}^{3}}$,(k=0,1,2,3).
所以随机变量X的分布列是:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{3}{10}$ | $\frac{1}{30}$ |
点评 本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\sqrt{3}$-1) | B. | ($\sqrt{3}$-1,1) | C. | (0,$\frac{\sqrt{2}}{2}$) | D. | $\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{11}$ | B. | 2$\sqrt{10}$ | C. | 6 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数大于等于120分 | 分数不足120分 | 合计 | |
| 周做题时间不少于15小时 | 15 | 4 | 19 |
| 周做题时间不足15小时 | 10 | 16 | 26 |
| 合计 | 25 | 20 | 45 |
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com