精英家教网 > 高中数学 > 题目详情
6.一个棱长为4的正方体,过正方体中两条互为异面直线的棱的中点作直线,则该直线被正方体的外接球球面截在球内的线段长是(  )
A.2$\sqrt{11}$B.2$\sqrt{10}$C.6D.4$\sqrt{2}$

分析 求出球心到MN的距离,利用勾股定理求出该直线被正方体的外接球球面截在球内的线段长.

解答 解:如图所示,球的半径为2$\sqrt{3}$,球心(2,2,2),
M(4,0,2),N(0,2,4),MN的中点(2,1,3),
球心到MN的距离为$\sqrt{2}$,
∴该直线被正方体的外接球球面截在球内的线段长是2$\sqrt{12-4}$=4$\sqrt{2}$,
故选D.

点评 本题考查球内接多面体,考查勾股定理的运用,求出球心到MN的距离是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.-2B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为$\frac{49}{60}$,设X为选出3名同学中女同学的人数,则该变量X的数学期望为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an},Sn是{an}的前n项和,则对于任意的n∈N*,“an>0”是“Sn>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从4双不同鞋子中任取4只,则其中恰好有一双的不同取法有48种,记取出的4只鞋子中成双的鞋子对数为X,则随机变量X的数学期望E(X)=$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x+1)的图象关于直线x=-1对称,且当x∈(0,+∞)时,f(x)=|log2x|,若a=f($\frac{1}{3}$),b=f(-4),c=f(2),则a,b,c之间的大小关系是(  )
A.c<b<aB.c<a<bC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从1,2,3,4,5,6这6个数中,每次取出两个不同的数,分别记作a,b,可以得到lga-lgb的不同值的个数是(  )
A.28B.26C.24D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设m∈R,向量$\overrightarrow{a}$=(m+2,1),$\overrightarrow{b}$=(1,-2m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{34}$.

查看答案和解析>>

同步练习册答案