精英家教网 > 高中数学 > 题目详情
5.等边△ABC在椭圆内,A是椭圆中心,B是椭圆的一个焦点,则该椭圆离心率的取值范围是(  )
A.(0,$\sqrt{3}$-1)B.($\sqrt{3}$-1,1)C.(0,$\frac{\sqrt{2}}{2}$)D.$\frac{\sqrt{2}}{2}$,1)

分析 利用椭圆方程,点与椭圆的位置关系,列出不等式,转化求解离心率即可.

解答 解:设椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
等边△ABC在椭圆内,A是椭圆中心,B是椭圆的一个焦点,
可得($\frac{1}{2}c$,$\frac{\sqrt{3}}{2}c$)在椭圆内部.
可得$\frac{{c}^{2}}{4{a}^{2}}+\frac{3{c}^{2}}{4{b}^{2}}<1$,可得e4-8e2+4>0,解得e2$<4-2\sqrt{3}$,
解得e∈(0,$\sqrt{3}-1$).
故选:A.

点评 本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某市小型机动车驾照“科二”考试共有五项考察项目,假设某人目前只训练了其中三个项目,现驾校欲从五项考察项目中任意抽出两项对其进行一次测试,则恰好抽到一项该人训练了的项目的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.-2B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知半径为r的球O与正方体ABCD-A1B1C1D1的各面都相切,记球O与正方体ABCD-A1B1C1D1的各面的交线的总长度为f(r),则f(1)=6π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=lnx,则函数g(x)=f(x)-f'(x)在区间[2,e]上的最大值为1-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过抛物线y2=6x的焦点F的直线l交抛物线于A,B两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则线段AB的中点M到y轴的距离为(  )
A.5B.4C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为$\frac{49}{60}$,设X为选出3名同学中女同学的人数,则该变量X的数学期望为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从1,2,3,4,5,6这6个数中,每次取出两个不同的数,分别记作a,b,可以得到lga-lgb的不同值的个数是(  )
A.28B.26C.24D.22

查看答案和解析>>

同步练习册答案