精英家教网 > 高中数学 > 题目详情
8.已知点A(x1,y1),B(x2,y2),C(x2,0),D(x1,0),其中x2>0,x1>0,且${y_1}x_1^2-{x_1}+{y_1}=0$,${y_2}x_2^2-{x_2}+{y_2}=0$,若四边形ABCD是矩形,则此矩形绕x轴旋转一周得到的圆柱的体积的最大值为$\frac{π}{4}$.

分析 由题意,可得x1,x2为方程mx2-x+m=0的两个不同实数解,x1+x2=$\frac{1}{m}$,x1x2=1,表示出圆柱的体积,利用配方法,即可得出结论

解答 解:由题意,令y1=y2=m,x1,x2为方程mx2-x+m=0的两个不同实数解,
∴x1+x2=$\frac{1}{m}$,x1x2=1,
矩形绕x轴旋转一周得到的圆柱的体积V=πm2|x1-x2|=πm2•$\sqrt{\frac{1}{{m}^{2}}-4}$=π$\sqrt{-4({m}^{2}-\frac{1}{8})^{2}+\frac{1}{16}}$,
∴m2=$\frac{1}{8}$时,矩形绕x轴旋转一周得到的圆柱的体积的最大值为$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题考查旋转体的体积,考查韦达定理的运用,正确表示圆柱的体积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.等比数列{an}的前n项和为Sn,若a1=3,S3=9,求数列{an}的公比与S10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CD的中点.
(Ⅰ)求证:D1F⊥平面ADE;(Ⅱ)求平面A1C1D与平面ADE所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在多面体EF-ABCD中,ABCD,ABEF均为直角梯形,$∠ABE=∠ABC=\frac{π}{2}$,DCEF为平行四边形,平面DCEF⊥平面ABCD.
(Ⅰ)求证:DF⊥平面ABCD;
(Ⅱ)若△ABD是等边三角形,且BF与平面DCEF所成角的正切值为$\frac{{\sqrt{2}}}{2}$,求二面角A-BF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,正方形BCDE所在的平面与平面ABC互相垂直,其中∠ABC=120°,AB=BC=2,F,G分别为CE,AB的中点.
(Ⅰ)求证:FG∥平面ADE;
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了传承经典,促进课外阅读,某校从高中年级和初中年级各随机抽取100名同学进行有关“四大名著”常识了解的竞赛.图1和图2分别是高中年级参加竞赛的学生成绩按[40,50),[50,60),[60,70),[70,80)分组,得到频率分布直方图.

(1)若初中年级成绩在[70,80)之间的学生恰有5名女同学,现从成绩在该组的学生任选两名同学,求其中至少有一名女同学的概率
(2)完成下列2×2列表,并回答是否有99%的把握认为“两个学段的学生对“四大名著”的了解有差异”?
成绩小于60分的人数成绩不小于60分人数合计
初中年级
高中年级
合计
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了100人,他们月收入(单位百元)的频数分布及对“楼市限购令”赞成人数如表.
月收入[15,25)[25,35)[35,45)[45,45)[55,65)[65,75)
频数102030201010
赞成人数816241264
(Ⅰ)由以上统计数据填下面2×2列联表并问是否有95%的把握认为“月收入以5500元为分界点”对“楼市限购令”的态度有差异;
月收入低于55百元的人数月收入高于55百元的人数合计
赞成a=c=
不赞成b=d=
合计
(Ⅱ)若对月收入在[15,25),[55,65)的不赞成“楼市限购令”的调查人中随机选取2人进行追踪调查,则选中的2人中恰有1人月收入在[15,25)的概率.
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(下面的临界值表供参考)
(参考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟,在调查某高中学校高三学生自主招生报考的情况,得到如下结果(  )
①报考“北约”联盟的考生,都没报考“华约”联盟
②报考“华约”联盟的考生,也报考了“京派”联盟
③报考“卓越”联盟的考生,都没报考“京派”联盟
④不报考“卓越”联盟的考生,就报考“华约”联盟
根据上述调查结果,下述结论错误的是(  )
A.没有同时报考“华约”和“卓越”联盟的考生
B.报考“华约”和“京派”联盟的考生一样多
C.报考“北约”联盟的考生也报考了“卓越”联盟
D.报考“京派”联盟的考生也报考了“北约”联盟

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,多面ABCDEF中,DE⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,四边形BDEF是正方形.
(1)求证:AE∥平面BCF;
(2)求直线AF与平面ABD所成角的正弦值;
(3)在线段EC上是否存在点P,使得AP⊥平面CEF,若存在,求出$\frac{PC}{EP}$的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案