精英家教网 > 高中数学 > 题目详情
2.已知x,y满足约束条件$\left\{\begin{array}{l}{x-4≤0}\\{2x-y+2≥0}\\{x+2y-6≥0}\end{array}\right.$,若z=$\frac{y}{x}$,则z的最大值为7.

分析 作出约束条件对应的可行域,z=$\frac{y}{x}$表示可行域内的点与原点连线的斜率,数形结合可得.

解答 解:作出约束条件$\left\{\begin{array}{l}{x-4≤0}\\{2x-y+2≥0}\\{x+2y-6≥0}\end{array}\right.$所对应的可行域(如图△ABC),
目标函数z=$\frac{y}{x}$表示可行域内的点与原点连线的斜率,
数形结合可得当过原点的直线经过点A($\frac{2}{5}$,$\frac{14}{5}$)时,
直线的斜率z取最大值7,
故答案为:7.

点评 本题考查简单线性规划,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.计算下列各题:
(1)(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0
(2)log535+2log${\;}_{\frac{1}{2}}$$\sqrt{2}$-log5$\frac{1}{50}$-log514+5log53

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=(ax2-2x)•ex,其中a>0,若f(x)在[-1,1]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,∠A,∠B,∠C所对应的边分别为a,b,c,若2∠B=∠A+∠C,且a=1,b=$\sqrt{3}$,则S△ABC=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若tan(π-α)=2,且sinα>0,则cosα=(  )
A.-$\frac{2\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若A、B、C是△ABC的三个内角,则(  )
A.sinA=sin(B+C)B.cosA=cos(B+C)C.tanA=tan(B+C)D.cotA=cot(B+C)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)定义在正整数集上,且对任意的正整数x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(8)=16,则f(2015)=4030.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的函数f(x),对任意x均有f(x)=f(x+2)+f(x-2),f(2014)=2014,则f(2026)=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求直线x=0,x=2,y=0与二次函数曲线y=4x2+2x+1所围成曲边梯形的面积.

查看答案和解析>>

同步练习册答案