精英家教网 > 高中数学 > 题目详情
14.若定义在R上的函数f(x),g(x)满足f(x-1)=f(1-x),g(x)=f(x-2),且f(x1)>f(x2)>f(1)(x1>x2>0),g(0)=3,g(2)=1,若g(x)在[0,m]上有最小值1,最大值3,则m的取值范围是(  )
A.(0,+∞)B.(0,2]C.[2,4]D.[2,+∞)

分析 由题意可得f(x)在定义域R上是偶函数且在[0,+∞)上是增函数,从而可得g(x)的图象关于x=2对称,且在[2,+∞)上是增函数,从而解得.

解答 解:∵f(x-1)=f(1-x),
∴f(x)在定义域R上是偶函数,
又∵对x1>x2>0,f(x1)>f(x2)>f(0);
∴f(x)在[0,+∞)上是增函数,
故g(x)的图象关于x=2对称,且在[2,+∞)上是增函数,
而g(0)=f(-2)=3,g(2)=f(0)=1,
故g(4)=g(0)=3,
∵g(x)在[0,m]上有最小值1,最大值3,
∴m∈[2,4],
故选:C.

点评 本题考查了函数的性质的判断及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在正四棱锥S-ABCD中,底面边长为a,侧棱长也为a,以底面中心O为坐标原点,建立如图所示的空间直角坐标系,P点在侧棱SC上,Q点在底面ABCD的对角线BD上,试求P、Q两点间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知AC平分∠BAD,CE⊥AB于点E,CF⊥AD于点F,且BC=CD.
(1)求证:△CFD≌△CEB;
(2)若AB=21,AD=9.求AE的长.

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:填空题

设复数满足,则____________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{3}{2}sinωx+\sqrt{3}{cos^2}ω\frac{x}{2}+\frac{{\sqrt{3}}}{2}({0<ω<2})$
(1)若函数f(x)图象的一条对称轴是直线$x=\frac{π}{4}$,求函数f(x)的最小正周期;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足$f({\frac{A}{ω}})=2\sqrt{3}$,a=12,$C=\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点A(1,1)在直线l:mx+ny=1上,则mn的最大值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,a1+a2=4,a2+a3=12,则a3与a4的等差中项为(  )
A.6B.12C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“x=2”是“(x-2)•(x+5)=0”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,SD=2,E为棱SB上的一点,且SE=2EB,CE与平面SAB所成角的正弦值为$\frac{\sqrt{30}}{10}$.
(1)证明:DE⊥CE
(2)求二面角A-DE-C的大小.

查看答案和解析>>

同步练习册答案