精英家教网 > 高中数学 > 题目详情
8.如图,已知AC平分∠BAD,CE⊥AB于点E,CF⊥AD于点F,且BC=CD.
(1)求证:△CFD≌△CEB;
(2)若AB=21,AD=9.求AE的长.

分析 (1)利用HL,证明:△CFD≌△CEB;
(2)若AB=21,AD=9.求出EB=DF=4,即可求AE的长.

解答 (1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F
∴CE=CF,
在Rt△BCE和Rt△DCF中,
∵CE=CF,BC=CD,
∴△CFD≌△CEB (HL).(3分)
(2)解:∵Rt△BCE≌Rt△DCF,
∴DF=EB,CE=CF,CE⊥AB于E,CF⊥AD于F,
∴Rt△ACE≌Rt△ACF,
∴AF=AE,(2分)
∵AB=15,AD=7,
∴AD+DF=AB-EB,
∴EB=DF=4,(2分)
∴AE=AF=AD+DF=11.

点评 本题考查三角形全等的证明,考查学生的计算能力,正确证明三角形全等是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥O-ABCD中,∠BAD=120°,OA⊥平面ABCD,E为OD的中点,OA=AC=$\frac{1}{2}$AD=2,AC平分∠BAD.
(1)求证:CE∥平面OAB;
(2)求四面体OACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(2,-5,1),B(1,-4,1),C(2,-2,4),则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知动点P到定点F(p,0)和到直线x=-p(p>0)的距离相等.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)经过点F的直线l交(Ⅰ)中轨迹C于A、B两点,点D在抛物线的准线上,且BD∥x轴.证明直线AD经过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算下列式子的值:
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,高为3的直三棱柱ABC-A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上,CF⊥DB1,且A1F=1.
(1)求证:CF⊥平面B1DF;
(2)求平面B1FC与平面AFC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:填空题

函数的图象向右平移个单位后与的图象重合,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若定义在R上的函数f(x),g(x)满足f(x-1)=f(1-x),g(x)=f(x-2),且f(x1)>f(x2)>f(1)(x1>x2>0),g(0)=3,g(2)=1,若g(x)在[0,m]上有最小值1,最大值3,则m的取值范围是(  )
A.(0,+∞)B.(0,2]C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=(x-1)3+1的图象的中心对称点的坐标是(1,1).

查看答案和解析>>

同步练习册答案