精英家教网 > 高中数学 > 题目详情
8.如图所示,圆锥顶点为P,底面圆心为O,AB和CD是底面圆O上的两条平行弦,证明:平面PAD与平面PCD的交线平行于底面.

分析 利用线面平行的判定与性质,可证平面PAB与平面PCD的交线平行于底面.

解答 证明:设平面PAB与平面PCD的交线为l,则
∵AB∥CD,AB?平面PCD,∴AB∥平面PCD
∵AB?面PAB,平面PAB与平面PCD的交线为l,∴AB∥l
∵AB在底面上,l在底面外,
∴l与底面平行.

点评 本题考查线面平行的判定与性质,考察数形结合思想,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.i+i2+i3+…+i2015=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(文科)已知数列{an}满足:a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*
(Ⅰ)求a3,a4,a5,a6的值及数列{an}的通项公式;
(Ⅱ)设bn=a2n-1•a2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图的程序框图,若输出的k=2,则输入x的取值范围是(  )
A.(21,41)B.[21,41]C.(21,41]D.[21,41)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xoy中,点P到两点F(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)的距离之和等于4,设P点的轨迹为曲线C,过点M(1,0)的直线l与曲线C交于A、B两点.
(1)求曲线C的方程;
(2)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,长轴端点A与短轴端点B间的距离为$\sqrt{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P为椭圆C上一动点,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在几何体ABCDN中,CD⊥平面ABC,DC∥AN,CD=2AN=4,又AB=AC=BC=2,点P是BD上的动点(与B、D两点不重合).
(1)若P为BD的中点,求证:AP⊥BC;
(2)若二面角B-PC-A的余弦值为$\frac{2\sqrt{19}}{19}$,求直线PN与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在离心率为e的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,右焦点F(c,0),A($\frac{{a}^{2}}{c}$,0),过F的直线交椭圆于M、N两点,过A与直线MN平行的直线交椭圆于B、C两点,求证:|$\overrightarrow{FM}$|•|$\overrightarrow{FN}$|=e2|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|.

查看答案和解析>>

同步练习册答案