精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
sin2x
sinx
+2sinx.
(1)求函数f(x)的定义域和最小正周期;
(2)若f(α)=2,α∈[0,π],求f(α+
π
12
)的值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:计算题,三角函数的图像与性质
分析:(1)由sinx≠0,即可求得f(x)的定义域,利用三角恒等变换可求得f(x)=2
2
sin(
π
4
+x),从而可求其最小正周期;
(2)由f(α)=2,α∈[0,π],可求得α=
π
2
,于是可求得f(α+
π
12
)的值.
解答: 解:(1)∵sinx≠0解得x≠kπ(k∈Z),
∴函数f(x)的定义域为{x|x≠kπ(k∈Z)}------------------------(2分)
∵f(x)=
sin2x
sinx
+2sinx=2cosx+2sinx=2
2
sin(
π
4
+x)---(4分)
∴f(x)的最小正周期T=
1
=2π-----------------------------------(6分)
(2)∵f(α)=2,
∴cosα+sinα=1,
∴(cosα+sinα)2=1,即2sinαcosα=0,---------------------(8分)
∵α∈[0,π],且sinα≠0,
∴α=
π
2
------------------------------------(10分)
∴f(α+
π
12
)=2
2
sin(
π
4
+α+
π
12
)=2
2
sin
6
=
2
------------------------------------(12分)
点评:本题考查三角函数中的恒等变换应用,考查正弦函数的定义域与周期,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中:
①“若x2+y2≠0,则x,y不全为零”的否命题;
②“若m>0,则x2+x-m=0有实根”的逆否命题;
③若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是0≤k≤
5

④已知二面角α-l-β的平面角的大小是60°,P∈α,Q∈β,R是直线l上的任意一点,过点P与Q作直线l的垂线,垂足分别为P1,Q1,且|PP1|=2,|QQ1|=3,|P1Q1|=5,则|PR|+|QR|的最小值为5
2

以上命题正确的为
 
(把所有正确的命题序号写在答题卷上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
100
+
y2
25
=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧),点P在椭圆E上.
(Ⅰ)求以原点为顶点,椭圆的右焦点为焦点的抛物线的方程;
(Ⅱ)若四边形ABCD为梯形,求点P的坐标;
(Ⅲ)若
BP
=m•
BA
+n•
BC
(m,n为实数),求m+n的最大值及对应的P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=2x+
1
2x

(1)判断f(x)为奇偶性;
(2)证明f(x)函数在[0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距为2,且过点(1,
2
2
),右焦点为F2.设A,B是C上的两个动点,线段AB的中点M的横坐标为-
1
2
,线段AB的中垂线交椭圆C于P,Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且的⊙O半径长为3
2
,求BD和FG的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ACBD内接于圆O,对角线AC与BD相交于M,AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于H,求证:
(1)EF⊥AB          
(2)OH=ME.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logm
1+x
x-1
(其中m>0且m≠1).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)当0<m<1时,判断函数f(x)在区间(1,+∞)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx+b与抛物线y=x2+ax+1相切于点(2,3),则b的值为
 

查看答案和解析>>

同步练习册答案