精英家教网 > 高中数学 > 题目详情
如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且的⊙O半径长为3
2
,求BD和FG的长度.
考点:与圆有关的比例线段
专题:直线与圆
分析:(1)根据切线判定知道EB⊥BC,而AD⊥BC,从而可以确定AD∥BE,那么△BFC∽△DGC,又G是AD的中点,就可得出结论BF=EF.
(2)要证PA是⊙O的切线,就是要证明∠PAO=90°连接AO,AB,根据第1的结论和BE是⊙O的切线和直角三角形的等量代换,就可得出结论.
(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性和勾股定理,可以求出BD和FG的长度.
解答: (1)证明:∵BC是圆O的直径,BE是圆O的切线,
∴EB⊥BC,又∵AD⊥BC,∴AD∥BE,
∴△BFC∽△DGC,△FEC∽△GAC,∴
BF
DG
=
EF
AG

∵G是AD的中点,∴DG=AG,∴BF=EF.
(2)证明:连结AO,AB,
∵BC是圆O的直径,∴∠BAC=90°,
在Rt△BAE中,由(1)知F是斜边BE的中点,
∴AF=FB=EF,∴∠FBA=∠FAB,
又∵OA=OB,∴∠ABO=∠BAO,
∵BE是圆O的切线,∴∠EBO=90°,
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是圆O的切线.
(3)解:过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,∴FH∥BC,
由(2)知∠FBA=∠BAF,∴BF=AF,
由已知得BF=FG,∴AF=FG,∴△AFG是等腰三角形,
∵FH⊥AD,∴AH=GH,∵DG=AG,∴DG=2HG,∴
HG
DG
=
1
2

∵FH∥BD,BF∥AD,∠FBD=90°,∴四边形BDHF是矩形,BD=FH,
∵FH∥BC,∴△HFG∽△DCG,∴
FH
CD
=
FG
CG
=
HG
DG
=
1
2
=
BD
CD

∵圆O的半径长为3
2

∴BC=6
2

BD
CD
=
BD
BC-BD
=
BD
6
2
-BD
=
1
2

解得BD=2
2
.∴BD=FH=2
2

FG
CG
=
HG
DG
=
1
2
,∴CF=3FG.
在Rt△FBC中,∵CF=3FG,BF=FG,
∴CF2=BF2+BC2,∴(3FG)2=FG2+(6
2
2
解得FG=3(负值舍去)
∴FG=3.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程
C
x
18
=
C
x+2
18
的解是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(1)求{an}的通项公式;
(2)设数列{bn}是以函数f(x)=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点A(0,2),且在x轴上截得的弦长为4.
(1)求动圆圆心的轨迹C的方程;
(2)点P为轨迹C上任意一点,直线l为轨迹C上在点P处的切线,直线l交直线:y=-1于点R,过点P作PQ⊥l交轨迹C于点Q,求△PQR的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sin2x
sinx
+2sinx.
(1)求函数f(x)的定义域和最小正周期;
(2)若f(α)=2,α∈[0,π],求f(α+
π
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆心在x轴上,半径为4的圆C位于y轴的右侧,且与y轴相切,
(Ⅰ)求圆C的方程;
(Ⅱ)若椭圆
x2
25
+
y2
b2
=1(b>0)
的离心率为
4
5
,且左右焦点为F1,F2,试探究在圆C上是否存在点P,使得△PF1F2为直角三角形?若存在,请指出共有几个这样的P点?并说明理由(不必具体求出这些点的坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1-an=2,a1=2,等比数列{bn}满足b1=a1,b4=a8
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,且满足a2=3,a4+a5+a6=18,数列{bn}满足b1=1,bn+1=2bn+1
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an•bn,试求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若在不等式组
y≥x
x≥0
x+y≤2
所确定的平面区域内任取一点P(x,y),则点P的坐标满足x2+y2≤2的概率是
 

查看答案和解析>>

同步练习册答案