分析 根据函数f(x)的解析式,列出使函数解析式有意义的不等式组,求出解集即可.
解答 解:∵函数f(x)=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)0,
∴$\left\{\begin{array}{l}{2-x>0}\\{12+x{-x}^{2}>0}\\{x-1≠0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x<2}\\{-3<x<4}\\{x≠1}\end{array}\right.$,
即-3<x<2且x≠1;
∴函数f(x)的定义域为{x|-3<x<2且x≠1}.
故答案为:{x|-3<x<2且x≠1}.
点评 本题考查了根据函数解析式求定义域的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{17}$ | B. | $\frac{4}{17}$ | C. | -$\frac{4}{17}$i | D. | -$\frac{4}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3+\sqrt{17}}{4}$ | B. | 2 | C. | $\frac{1+\sqrt{17}}{4}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com