精英家教网 > 高中数学 > 题目详情
12.半径为1的球被一平面截去部分得一个几何体,其三视图和尺寸如图所示,则球心到该截面的距离为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

分析 由已知三视图可得,截面的直径为$\sqrt{2}$,进而可得球心到该截面的距离.

解答 解:由已知三视图可得,截面的直径为$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
故截面半径r=$\frac{\sqrt{2}}{2}$,
又由球半径R=1,
故球心到该截面的距离d=$\sqrt{{R}^{2}-{r}^{2}}$=$\frac{\sqrt{2}}{2}$,
故选:C

点评 本题考查的知识点是球的几何特征,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似的看作是一个正六边形,如图为一组蜂巢的截面图,其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,第六幅图的蜂巢总数为91.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.椭圆$C:\;\;\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的右焦点为F(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过F且斜率为1的直线交椭圆于M,N两点,P是直线x=4上任意一点.求证:直线PM,PF,PN的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若向量$\overrightarrow{a}$(-1,1),$\overrightarrow{b}$(3,-2),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{6}$B.5C.$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知s$in2α=\frac{24}{25}$,且$π<α<\frac{5π}{4}$,则cosα-sinα=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow a=(sinx,-1)$,$\overrightarrow b=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow a+\overrightarrow b)•\overrightarrow a-2$.
(1)求函数f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,$a=\sqrt{3}$,c=1,且f(A)=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个四面体的三视图,图中三个三角形均为直角三角形,且面积之和为8,则其外接球的表面积的最小值为(  )
A.16πB.C.$\frac{32π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知过抛物线C:x2=2py(p>0)的焦点F且斜率为$\frac{3}{4}$的直线与抛物线C在第一象限的交点为P,且|PF|=5.
(1)求抛物线C的方程;
(2)过F且斜率不为0直线l交抛物线C于M,N两点,抛物线C的准线与x轴交于点K,求证:直线KM与KN关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sin(π-x)cosx+2cos2x+a-1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值与最小值的和为2,求a的值.

查看答案和解析>>

同步练习册答案