精英家教网 > 高中数学 > 题目详情
3.椭圆$C:\;\;\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的右焦点为F(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过F且斜率为1的直线交椭圆于M,N两点,P是直线x=4上任意一点.求证:直线PM,PF,PN的斜率成等差数列.

分析 (1)由焦点坐标可得c=1,运用椭圆的离心率公式,可得a=2,再由a,b,c的关系求得b,进而得到所求椭圆方程;
(2)设M(x1,y1),N(x2,y2),P(4,y0),求得直线MN的方程,代入椭圆方程,消去y,可得x的方程,运用韦达定理和直线的斜率公式,化简整理,结合等差数列的中项的性质,即可得证.

解答 解:(1)由题意可得c=1,e=$\frac{c}{a}$=$\frac{1}{2}$,
解得a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
则椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)证明:设M(x1,y1),N(x2,y2),P(4,y0),
由题意可得直线MN的方程为y=x-1,
代入椭圆方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,可得
7x2-8x-8=0,
x1+x2=$\frac{8}{7}$,x1x2=-$\frac{8}{7}$,
kPM+kPN=$\frac{{y}_{0}-{y}_{1}}{4-{x}_{1}}$+$\frac{{y}_{0}-{y}_{2}}{4-{x}_{2}}$=$\frac{({y}_{0}-{x}_{1}+1)(4-{x}_{2})+({y}_{0}-{x}_{2}+1)(4-{x}_{1})}{(4-{x}_{1})(4-{x}_{2})}$
=$\frac{8{y}_{0}+8+2{x}_{1}{x}_{2}-({y}_{0}+5)({x}_{1}+{x}_{2})}{16+{x}_{1}{x}_{2}-4({x}_{1}+{x}_{2})}$=$\frac{8{y}_{0}+8-\frac{16}{7}-\frac{8}{7}({y}_{0}+5)}{16-\frac{8}{7}-\frac{32}{7}}$=$\frac{2{y}_{0}}{3}$,
又kPF=$\frac{{y}_{0}}{3}$,则kPM+kPN=2kPF
则直线PM,PF,PN的斜率成等差数列.

点评 本题考查椭圆方程的求法,注意运用椭圆的性质:离心率,考查直线的斜率成等差数列,注意运用联立直线方程和椭圆方程,运用韦达定理和点满足直线方程,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.函数$f(x)=lnx+\frac{1}{2}{x^2}+ax(a∈R)$,$g(x)={e^x}+\frac{3}{2}{x^2}$.
(Ⅰ)讨论f(x)的极值点的个数;
(Ⅱ)若对于任意x∈(0,+∞),总有f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx,g(x)=f(x)-2ax(a∈R).
(1)当a=$-\frac{1}{2}$时,求f(x)在区间[$\frac{1}{e}$,e]上的最大值和最小值;
(2)若对?x∈(2,+∞),g(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=x2-2ax+lnx(a∈R).
(I)函数y=f(x)在点(1,f(1))处的切线与直线x-2y+1=0垂直,求a的值;
(II)讨论函数f(x)的单调性;
(III)不等式2xlnx≥-x2+ax-3在区间(0,e]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$y=sin(2x-\frac{π}{6})$图象的一条对称轴方程是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若抛物线y2=-2px的焦点与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1的左焦点重合,则p的值为(  )
A.-2B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知n∈N+,则$\frac{1}{2!}+\frac{2}{3!}+…+\frac{n}{(n+1)!}$=1-$\frac{1}{(n+1)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.半径为1的球被一平面截去部分得一个几何体,其三视图和尺寸如图所示,则球心到该截面的距离为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a,b∈R,直线l:y=ax+b,圆C:x2+y2=1.命题p:直线l与圆C相交;命题q:a>$\sqrt{{b^2}-1}$.则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案