精英家教网 > 高中数学 > 题目详情
7.某种产品的年销售量y与该年广告费用支出x有关,现收集了4组观测数据列于下表:
x(万元)1456
y(万元)30406050
现确定以广告费用支出x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2017年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(线性回归方程系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$x).

分析 (1)计算$\overline{x}$、$\overline{y}$,求出回归系数$\stackrel{∧}{b}$、$\stackrel{∧}{a}$,写出所求回归直线方程;
(2)利用回归直线方程计算x=10时$\stackrel{∧}{y}$的值即可.

解答 解:(1)计算$\overline{x}$=$\frac{1}{4}$×(1+4+5+6)=4,
$\overline{y}$=$\frac{1}{4}$×(30+40+60+50)=45,
$\sum_{i=1}^{4}$xiyi=1×30+4×40+5×60+6×50=790,
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=12+42+52+62=78;
∴回归系数$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{790-4×4×45}{78-4{×4}^{2}}$=5,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=45-5×4=25,
∴所求回归直线方程为$\stackrel{∧}{y}$=5x+25;
(2)由已知得x=10时,
$\stackrel{∧}{y}$=5×10+25=75(万元)
∴可预测该年的销售量为75万元.

点评 本题考查了求线性回归方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.A={(x,y)|y=2x+5},B={(x,y)|y=1-2x},则A∩B={(-1,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下关于导数和极值点的说法中正确的是(  )
A.可导函数f(x)为增函数的充要条件是f'(x)>0.
B.若f(x)可导,则f'(x0)=0是x0为f(x)的极值点的充要条件.
C.f(x)在R上可导,若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,则?x∈R,f'(x)>2017.
D.若奇函数f(x)可导,则其导函数f'(x)为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.同时掷3枚硬币,那么互为对立事件的是(  )
A.最少有1枚正面和最多有1枚正面B.最少有2枚正面和恰有1枚正面
C.最多有1枚正面和最少有2枚正面D.最多有1枚正面和恰有2枚正面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在一段时间内,某种商品的价格x(元)和某大型公司的需求量y(千件)之间的一组数据如表:
价格x8.28.610.011.311.9
需求量y6.27.58.08.59.8
根据上表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.据此估计,某种商品的价格为15元时,求其需求量约为多少千件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.求由抛物线y=2x2与直线x=2,y=0所围成的平面图形的面积时,将区间[0,2]等分成n个小区间,则第i个区间为(  )
A.[$\frac{i-1}{n}$,$\frac{i}{n}$]B.[$\frac{i}{n}$,$\frac{i+1}{n}$]C.[$\frac{2(i-2)}{n}$,$\frac{2(i-1)}{n}$]D.[$\frac{2(i-1)}{n}$,$\frac{2i}{n}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z满足|3+4i|+z=1+3i.
(Ⅰ)求$\overline{z}$;
(Ⅱ)求$\frac{(1+i)^{2}(3+4i)}{z}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某学校有1680名学生,现在采用系统抽样的方法抽取84人,调查他们对学校食堂的满意程度,将1680人,按1,2,3,…,1680随机编号,则在抽取的84人中,编号落在[61,160]内的人数为(  )
A.7B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过动点M作圆:(x-2)2+(y-2)2=1的切线MN,其中N为切点,若|MN|=|MO|(O为坐标原点),则|MN|的最小值是$\frac{{7\sqrt{2}}}{8}$.

查看答案和解析>>

同步练习册答案