| x(万元) | 1 | 4 | 5 | 6 |
| y(万元) | 30 | 40 | 60 | 50 |
分析 (1)计算$\overline{x}$、$\overline{y}$,求出回归系数$\stackrel{∧}{b}$、$\stackrel{∧}{a}$,写出所求回归直线方程;
(2)利用回归直线方程计算x=10时$\stackrel{∧}{y}$的值即可.
解答 解:(1)计算$\overline{x}$=$\frac{1}{4}$×(1+4+5+6)=4,
$\overline{y}$=$\frac{1}{4}$×(30+40+60+50)=45,
$\sum_{i=1}^{4}$xiyi=1×30+4×40+5×60+6×50=790,
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=12+42+52+62=78;
∴回归系数$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{790-4×4×45}{78-4{×4}^{2}}$=5,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=45-5×4=25,
∴所求回归直线方程为$\stackrel{∧}{y}$=5x+25;
(2)由已知得x=10时,
$\stackrel{∧}{y}$=5×10+25=75(万元)
∴可预测该年的销售量为75万元.
点评 本题考查了求线性回归方程的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 可导函数f(x)为增函数的充要条件是f'(x)>0. | |
| B. | 若f(x)可导,则f'(x0)=0是x0为f(x)的极值点的充要条件. | |
| C. | f(x)在R上可导,若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,则?x∈R,f'(x)>2017. | |
| D. | 若奇函数f(x)可导,则其导函数f'(x)为偶函数. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最少有1枚正面和最多有1枚正面 | B. | 最少有2枚正面和恰有1枚正面 | ||
| C. | 最多有1枚正面和最少有2枚正面 | D. | 最多有1枚正面和恰有2枚正面 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 价格x | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
| 需求量y | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{i-1}{n}$,$\frac{i}{n}$] | B. | [$\frac{i}{n}$,$\frac{i+1}{n}$] | C. | [$\frac{2(i-2)}{n}$,$\frac{2(i-1)}{n}$] | D. | [$\frac{2(i-1)}{n}$,$\frac{2i}{n}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 5 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com