精英家教网 > 高中数学 > 题目详情
1.已知球上四点A,B,C,D,直角△BCD直角边BC=3,DC=4,AC⊥平面BCD,AC=$\sqrt{11}$,则该球的体积为36π.

分析 三棱锥S-ABC可以扩充为AC,BC,DC为棱的长方体,外接球的直径为体对角线,可得三棱锥的外接球的半径,即可求出三棱锥的外接球的体积.

解答 解:由题意,AC⊥平面BCD,BC⊥CD,
∴三棱锥S-ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,
∴4R2=AC2+BC2+CD2=36,
∴R=3,
∴球O的体积为$\frac{4}{3}$πR3=36π,
故答案为:36π.

点评 本题考查三棱锥的外接球的体积,考查学生的计算能力,求出球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知曲线y2=ax与其关于点(1,1)对称的曲线有两个不同的交点A和B,如果过这两个交点的直线的倾斜角是45°,则实数a的值是(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tanα=2,其中α是第三象限的角,则sin(π+α)等于(  )
A.-$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\frac{{{x^3}+{x^2}+2x+1}}{{{x^2}+1}}$,x∈[-2015,2015]的最大值与最小值分别为A和B,则A+B=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.空间四边形ABCD中,AC⊥BD,且AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH为(  )
A.平行四边形B.矩形C.正方形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=6cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{4}y}\end{array}\right.$得到曲线C′.
(1)求曲线C′的普通方程;
(2)若点A在曲线C′上,点D(1,3),当点A在曲线C′上运动时,求AD中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=2sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{12}$个单位,再将所有点的横坐标伸长到原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)的图象与直线x=0,x=2π,x轴围成的图形面积为(  )
A.0B.4C.8D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,则$\frac{sinB}{sinC}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.12πB.18πC.24πD.36π

查看答案和解析>>

同步练习册答案