精英家教网 > 高中数学 > 题目详情
9.设集合M={x|x2-3x-10<0},N={x|0≤x≤7},则M∩N=(  )
A.(-2,7]B.[0,5)C.[-2,0)D.(0,5)

分析 求出M中不等式的解集确定出M,找出M与N的交集即可.

解答 解:由M中不等式变形得:(x-5)(x+2)<0,
解得:-2<x<5,即M=(-2,5),
∵N=[0,7],
∴M∩N=[0,5),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知a,b∈R+,那么“log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“a<b”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,AB⊥BB1,AN∥BB1,AB=BC=AN=$\frac{1}{2}$BB1=4,四边形BB1C1C为矩形,且平面BB1C1C⊥平面ABB1N.
(1)求证:BN⊥平面C1B1N;
(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;
(Ⅲ)设M为AB中点,在BC边上求一点P,使MP∥平面CNB1,求$\frac{BP}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C:y=2x3-3x2-2x+1,点P($\frac{1}{2}$,0),
(1)求过点P的切线l的方程;
(2)求切线l与曲线C所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a=$\frac{1}{\sqrt{2}+1}$,b=$\frac{1}{\sqrt{2}-1}$,则a,b的等差中项为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出以下四个命题,其中真命题的序号为①④.
①若命题p:“?x∈R,使得x2+x+1<0”,则?p:“?x∈R,均有x2+x+1≥0”;
②线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;
③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
④若x,y满足x2+y2+xy=1,则x+y的最大值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,若a1+a4+a7=12,且a2+a5+a8=15,则a3+a6+a9=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等差数列{an}的公差d=$\frac{1}{2}$,a2+a4+a6+…+a100=85,则a1+a2+a3+…+a99+a100的值为(  )
A.120B.145C.150D.170

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,已知a5=10,S3=3,那么(  )
A.a1=2,d=3B.a1=2,d=-3C.a1=-2,d=-3D.a1=-2,d=3

查看答案和解析>>

同步练习册答案