精英家教网 > 高中数学 > 题目详情
19.已知a,b∈R+,那么“log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“a<b”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

分析 利用对数函数的单调性即可判断出结论.

解答 解:∵前提条件是a,b∈R+,∴log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b⇒a<b;反之也能推出,∴“log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“a<b”的充要条件.
故选:A.

点评 本题考查了对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设f(x)是定义在R上的周期为3的函数,当x∈[-2,1)时,f(x)=$\left\{\begin{array}{l}4{x^2}-2,-2≤x≤0\\ x,0<x<1\end{array}$,则f(f($\frac{21}{4}$))=(  )
A.-$\frac{3}{4}$B.$\frac{1}{4}$C.-$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知回归直线的方程为$\widehat{y}$=2-2.5x,则x=25时,y的估计值是-60.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,等边△PAD所在的平面与正方形ABCD所在的平面互相垂直,O为AD的中点,E为DC的中点,且AD=2.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求二面角P-EB-A的余弦值;
(Ⅲ)在线段AB上是否存在点M,使线段PM与△PAD所在平面成30°角.若存在,
求出AM的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在如图所示的知识结构图中:“求简单函数的导数”的“上位”要素有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥-1}\\{x+y≤3}\\{x≥0,y≥0}\end{array}}\right.$,则z=x-2y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各命题中为真命题的是(  )
A.?x∈R,x≥0B.如果x<5,则x<2C.?x∈R,x2≤-1D.?x∈R,x2+1≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为预防某种流感病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如表:
 A组B组C组
疫苗有效673xy
疫苗无效7790Z
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求x的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={x|x2-3x-10<0},N={x|0≤x≤7},则M∩N=(  )
A.(-2,7]B.[0,5)C.[-2,0)D.(0,5)

查看答案和解析>>

同步练习册答案