精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系内,动点到定点的距离与到定直线的距离之比为

1)求动点的轨迹的方程;

2)若轨迹上的动点到定点的距离的最小值为1,求的值;

3)设点是轨迹上两个动点,直线与轨迹的另一交点分别为,且直线的斜率之积等于,问四边形的面积是否为定值?请说明理由

【答案】1;(2;(3)是定值,面积

【解析】

1)由两点间距离公式和点到直线距离公式即可求出动点的轨迹的方程;

2)利用两点间距离公式能求出.讨论在,取得最小值为1,其对应的是否在,即可得出答案.

3)设, ,,,由点,在椭圆,,由此利用点到直线的距离公式、椭圆的对称性,结合已知条件能即可求出出四边形面积的定值.

1)设

∵动点到定点的距离与到定直线的距离之比为

化简得:

动点的轨迹的方程为:

2)设

由两点间距离公式得:

①当,,

,取得最小值 解得:

此时 ,故舍去.

②当 :

, 取得最小值 解得:,(舍去)

综上所述: .

3)设,

整理可得:

,在椭圆

,

化简可得:

直线的直线方程为

到直线的距离

的面积:

四边形的面积为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求的极坐标方程;

(2)设的交点为的交点为,且,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作

1)令,求的取值范围;

2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.

1)若米,米,求的值;

2)若体育馆侧面的最大宽度不超过75米,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中,,点E是棱上的一个动点,若平面交棱于点,给出下列命题:

①四棱锥的体积恒为定值;

②存在点,使得平面

③对于棱上任意一点,在棱上均有相应的点,使得平面

④存在唯一的点,使得截面四边形的周长取得最小值.

其中真命题的是____________.(填写所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的定义域恰是不等式的解集,其值域为,函数的定义域为,值域为.

1)求定义域和值域

2)试用单调性的定义法解决问题:若存在实数,使得函数上单调递减,上单调递增,求实数的取值范围并用表示

3)是否存在实数,使成立?若存在,求实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面直角坐标系内两点满足条件:①点都在函数的图像上;②点关于原点对称.则称是函数的一个“伙伴点组”(点组看作同一个“伙伴点组”).已知函数有两个“伙伴点组”,则实数的取值范围是__________

查看答案和解析>>

同步练习册答案