【题目】若平面直角坐标系内两点
,
满足条件:①点
,
都在函数
的图像上;②点
,
关于原点对称.则称
是函数
的一个“伙伴点组”(点组
与
看作同一个“伙伴点组”).已知函数
有两个“伙伴点组”,则实数
的取值范围是__________.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
内,动点
到定点
的距离与
到定直线
的距离之比为![]()
(1)求动点
的轨迹
的方程;
(2)若轨迹
上的动点
到定点
的距离的最小值为1,求
的值;
(3)设点
、
是轨迹
上两个动点,直线
、
与轨迹
的另一交点分别为
、
,且直线
、
的斜率之积等于
,问四边形
的面积
是否为定值?请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,给出下列命题:
①若
既是奇函数又是偶函数,则
;
②若
是奇函数,且
,则
至少有三个零点;
③若
在
上不是单调函数,则
不存在反函数;
④若
的最大值和最小值分别为
、
,则
的值域为![]()
则其中正确的命题个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=
,n=
,现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中真命题有___________________(写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )
![]()
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以原点
为极点,
轴正半轴为极轴建立极坐标系.若曲线
的极坐标方程为
,
点的极坐标为
,在平面直角坐标系中,直线
经过点
,且倾斜角为
.
(1)写出曲线
的直角坐标方程以及点
的直角坐标;
(2)设直线
与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点P(2,1).
(1)求椭圆C的方程,并求其离心率;
(2)过点P作x轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'P与C交于另一点B.设O为原点,判断直线AB与直线OP的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
到两点
、
的距离之和等于
,设点
的轨迹为
,斜率为
的直线
过点
,且与轨迹
交于
、
两点.
(1)写出轨迹
的方程;
(2)如果
,求
的值;
(3)是否存在直线
,使得在直线
上存在点
,满足
为等边三角形?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com