精英家教网 > 高中数学 > 题目详情

如图,在四棱柱中,侧棱底面,

(Ⅰ)求证:平面
(Ⅱ)若直线与平面所成角的正弦值为,求的值
(Ⅲ)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式。(直接写出答案,不必说明理由)

(Ⅰ)见解析(Ⅱ)1(Ⅲ)共有种不同的方案

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等腰梯形中,的中点.将梯形旋转,得到梯形(如图).

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形ABCD中,AD//BC,,,如图(1).把沿翻折,使得平面,如图(2).

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
(Ⅲ)在线段上是否存在点N,使得?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求四棱锥P—ACDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),是等腰直角三角形,其中分别为的中点,将沿折起,点的位置变为点,已知点在平面上的射影的中点,如图(2)所示.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案