精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
1
2
2
sin(x-
π
4
)

(1)求它的定义域,值域;
(2)判定它的奇偶性和周期性;
(3)判定它的单调区间及每一区间上的单调性.
(1)要使函数有意义,则
2
sin(x-
π
4
)>0
,解得2kπ<x-
π
4
<2kπ+π

2kπ+
π
4
<x<2kπ+
4

即函数的定义域为(2kπ+
π
4
,2kπ+
4
)

0<
2
sin?(x-
π
4
)≤1

∴函数f(x)=log
1
2
2
sin(x-
π
4
)
≥0,
即函数的值域为[0,+∞).
(2)∵函数的定义域关于原点不对称,∴函数为非奇非偶函数函数.
∵函数y=
2
sin?(x-
π
4
)
的周期是π,
∴函数f(x)=log
1
2
2
sin(x-
π
4
)
周期是π.
(3)∵y=
2
sin?(x-
π
4
)
的单调递增区间为(2kπ+
π
4
,2kπ+
4
]

∴根据复合函数的单调性可知此时函数f(x)=log
1
2
2
sin(x-
π
4
)
单调递减.
∵y=
2
sin?(x-
π
4
)
的单调递减区间为[2kπ+
4
2kπ+
4
)

∴根据复合函数的单调性可知此时函数f(x)=log
1
2
2
sin(x-
π
4
)
单调递增.
故函数的单调递增区间为为[2kπ+
4
2kπ+
4
)
,递减区间为为(2kπ+
π
4
,2kπ+
4
]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设函数f1(x)=log2x-(
1
2
)x
f2(x)=log
1
2
x-(
1
2
)x
的零点分别为x1,x2,则(  )
A.0<x1x2<1B.x1x2=1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=log2(x+1),g(x+1)=log2(3x+2),求在g(x)≥f(x)成立的条件下,函数y=g(x)-f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直角坐标平面内不同的两点P、Q满足条件:①P、Q都在函数f(x)=
log2x(x>0)
-x2-4x(x≤0)
y=f(x)的图象上
②P,Q关于原点对称,则称点对[P,Q]是函数Y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).若函数,则此函数的“友好点对”有(  )对.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
log3x,(x>0)
2x,(x≤0)
,则f[f(
1
9
)]
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
2x+a
1+2x
(a∈R)是R上的奇函数.
(Ⅰ)求a的值;
(Ⅱ)若m∈R+,且满足log
1+x
1-x
>log3
1+x
m
,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求值:
(1)lg25+lg2lg50+23+
1
2
log25

(2)
3-2
2
+
3(1-
2
)3
+(
2
-1)0
+(0.027)-
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=f(x)的定义域是[2,4],则y=f(log2x)的定义域是(  )
A.[
1
2
,1]
B.[4,16]C.[
1
16
1
4
]
D.[2,4]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知幂函数f(x)=x(m2+m)-1(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.

查看答案和解析>>

同步练习册答案