精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
(1);(2).

试题分析:(1)由题可知a=2,b=1椭圆的标准方程为:;  6分
(2)设双曲线方程为:,                          8分
∵双曲线经过点(2,2),∴                             10分
故双曲线方程为:.                                   12分
点评:简单题,两道小题,均应用“待定系数法”求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)已知点,直线 交轴于点,点上的动点,过点垂直于的直线与线段的垂直平分线交于点
(Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且 证明直线AB必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,对于任意两点的“非常距离”
给出如下定义:若,则点与点的“非常距离”为
,则点与点的“非常距离”为
已知是直线上的一个动点,点的坐标是(0,1),则点与点的“非常距离”的最小值是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线与直线有两个交点,则的取值范围为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知已知点(2,3)在双曲线C:上,C的焦距为4,
则它的离心率为( )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知当椭圆的长轴、短轴、焦距依次成等比时称椭圆为“黄金椭圆”,请用类比的性质定义“黄金双曲线”,并求“黄金双曲线”的离心率为(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线
椭圆于两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)双曲线与椭圆有相同焦点,且经过点(,4),求其方程.

查看答案和解析>>

同步练习册答案