精英家教网 > 高中数学 > 题目详情
(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线
椭圆于两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
(Ⅰ)(Ⅱ)

试题分析:(Ⅰ)由已知,椭圆方程可设为 ∵长轴长为,
心率,∴,所求椭圆方程为:
(Ⅱ)因为直线过椭圆右焦点,且斜率为,所以直线的方程为.设,由      得 ,解得 .∴ . 
点评:本题中第二小题三角形分割成两个小三角形后底边长已知,只需求高,简化了计算量
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

求过两直线的交点,且满足下列条件的直线的方程.
(Ⅰ)和直线垂直;
(Ⅱ)在轴,轴上的截距相等.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线,过其一个焦点且垂直于实轴的直线与双曲线交于两点,O是坐标原点,满足,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为中心,为两个焦点的椭圆上存在一点,满足,则该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上的焦点,点在抛物线上,点,则要使的值最小的点的坐标为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆及直线
(1)当为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为双曲线的焦点,点在双曲线上,点坐标为
的一条中线恰好在直线上,则线段长度为           

查看答案和解析>>

同步练习册答案