精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是一个等差数列,且a2=1,a5=$\frac{1}{5}$
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和为Sn的最大值.

分析 (1)利用等差数列的通项公式即可得出;
(2)由an≥0,解得$n≤\frac{23}{4}$,可得数列{an}的前n项和的最大值为S4

解答 解:(1)设等差数列{an}的公差为d,
∵a2=1,a5=$\frac{1}{5}$,
∴$\frac{1}{5}$=1+3d,解得d=-$\frac{4}{15}$.
∴an=1-$\frac{4}{15}(n-2)$=$\frac{23-4n}{15}$;
(2)由an≥0,解得$n≤\frac{23}{4}$,
∴数列{an}的前n项和的最大值为S4=$4×(1+\frac{4}{15})$+$\frac{4×3}{2}×(-\frac{4}{15})$=$\frac{52}{15}$.

点评 本题考查了等差数列的通项公式与前n项和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若a<b<c,则下列结论中正确的是(  )
A.a|c|<b|c|B.ab<bcC.a-c<b-cD.$\frac{1}{a}>\frac{1}{b}>\frac{1}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α∩β=a,b?β,a∩b=A,c?α,c∥a,求证:b,c是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,PD⊥平面ABCD,△ABD是边长为3的正三角形,BC=CD=$\sqrt{3}$,PD=4.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)在线段PA上是否存在点M,使得DM∥平面PBC.若存在,求三棱锥P-BDM的体积;若不存在,请说明理由.(锥体体积公式:V=$\frac{1}{3}$Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=30°,则圆O的面积是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=8,DC=4,则DE=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=6n-n2,求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等比数列中,Sn=3n+a,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,三棱柱中,侧棱AA1⊥底面A1B1C1,三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是(  )
A.CC1与B1E是异面直线B.A1C1⊥平面ABB1A1
C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面A1EB

查看答案和解析>>

同步练习册答案