精英家教网 > 高中数学 > 题目详情
6.执行如图所示的程序框图,若输入的a=16,b=4,则输出的n=(  )
A.4B.5C.6D.7

分析 模拟程序的运行,依次写出每次循环得到的n,a,b的值,当a=121.5,b=128时满足条件a≤b,退出循环,输出n的值为5.

解答 解:模拟程序的运行,可得
a=16,b=4,n=1
a=24,b=8
不满足条件a≤b,执行循环体,n=2,a=36,b=16
不满足条件a≤b,执行循环体,n=3,a=54,b=32
不满足条件a≤b,执行循环体,n=4,a=81,b=64
不满足条件a≤b,执行循环体,n=5,a=121.5,b=128
满足条件a≤b,退出循环,输出n的值为5.
故选:B.

点评 本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知sin(α$-\frac{π}{8}$)=$\frac{4}{5}$,则cos(α+$\frac{3π}{8}$)=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=ex+a+x,g(x)=ln(x+3)-4e-x-a,其中e为自然对数的底数,若存在实数x0,使得f(x0)-g(x0)=2成立,则实数a值为(  )
A.-2+ln2B.1+ln2C.-1-ln2D.2+ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=3+3cosθ\\ y=3sinθ\end{array}$,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=$\sqrt{3}$sinθ+cosθ,曲线C3的极坐标方程是θ=$\frac{π}{3}$.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.二项式($\root{3}{x}$-$\frac{1}{x}$)n的展开式中,所有项的二项式系数之和为4096,则常数项等于-220.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sinωxcosωx-$\sqrt{3}{cos^2}ωx+\frac{{\sqrt{3}}}{2}$(ω>0)图象的两条相邻对称轴为$\frac{π}{2}$.
(1)求函数y=f(x)的对称轴方程;
(2)若函数y=f(x)-$\frac{1}{3}$在(0,π)上的零点为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.连掷两次骰子得到的点数分别为m和n,记向量$\overrightarrow a=(m,n)$与向量$\overrightarrow b=(1,-1)$的夹角为θ,则θ为锐角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.球面上有A,B,C三点,球心O到平面ABC的距离是球半径的$\frac{1}{3}$,且AB=2$\sqrt{2}$,AC⊥BC,则球O的表面积是(  )
A.81πB.C.$\frac{81π}{4}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}-{(x-1)^2}+2,\;\;\;x≤1\\ \frac{1}{x}+1,\;\;x>1\;.\;\;\end{array}\right.$下列四个命题:
①f(f(1))>f(3);
②?x0∈(1,+∞),$f'({x_0})=-\frac{1}{3}$;
③f(x)的极大值点为x=1;
④?x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1
其中正确的有①②③④.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案