精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=3+3cosθ\\ y=3sinθ\end{array}$,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=$\sqrt{3}$sinθ+cosθ,曲线C3的极坐标方程是θ=$\frac{π}{3}$.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.

分析 (Ⅰ)先把参数方程转化为普通方程,利用由x=ρcosθ,y=ρsinθ可得极坐标方程;
(Ⅱ)利用|AB|=|ρ12|即可得出.

解答 解:(Ⅰ)曲线C1的参数方程为$\left\{\begin{array}{l}x=3+3cosθ\\ y=3sinθ\end{array}$,(θ为参数),普通方程为(x-3)2+y2=9,x2+y2-6x=0,
由x=ρcosθ,y=ρsinθ,得ρ2-6ρcosθ=0,∴曲线C1的极坐标方程为ρ=6cosθ;
(Ⅱ)设点A的极坐标为(ρ1,$\frac{π}{3}$),点B的极坐标为(ρ2,$\frac{π}{3}$),则ρ1=6cos$\frac{π}{3}$=3,ρ2=$\sqrt{3}$sin$\frac{π}{3}$+cos$\frac{π}{3}$=2,
所以AB|=|ρ12|=1.

点评 本题考查了圆的极坐标方程、参数方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合A={0,1},B={x|(x+2)(x-1)<0,x∈Z},则A∪B=(  )
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}的前n项和是Sn,且a3=1,a5=4,则S13=(  )
A.39B.91C.48D.51

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,0),过点Q(1,0)的直线与椭圆C相交于A,B两点,设点P(4,3),记PA,PB的斜率分别为k1,k2
(Ⅰ)求椭圆C的方程;
(Ⅱ)探讨k1+k2是否为定值?如果是,求出该定值,如果不是,求出k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.三棱锥P-ABC中,PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,则此三棱锥外接球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z满足iz=1-i,则$\overline z$=(  )
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入的a=16,b=4,则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=ex-ax(e=2.71828…是自然对数的底数).
(I)若函数f(x)在区间(-e,-1)上是减函数,求a的取值范围;
(II)若函数F(x)=f(x)-(ex-2ax+2lnx+a)在区间(0,$\frac{1}{2}$)内无零点,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行如图所示的程序框图,若输入x=6的值为6,则输出的x值为0.

查看答案和解析>>

同步练习册答案