精英家教网 > 高中数学 > 题目详情
5.等差数列{an}的前n项和是Sn,且a3=1,a5=4,则S13=(  )
A.39B.91C.48D.51

分析 利用等差数列通项公式求出首项和公差,由此能求出S13

解答 解:设等差数列{an}的公差为d,
∵a3=1,a5=4,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=1}\\{{a}_{1}+4d=4}\end{array}\right.$,解得${a}_{1}=-2,d=\frac{3}{2}$,
∴S13=13×(-2)+$\frac{13×12}{2}×\frac{3}{2}$=91.
故选:B.

点评 本题考查等差数列的前13项和的求法,考查等差数列的通项公式、前n项和公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知三棱锥S-ABC的各顶点都在一个球面上,△ABC所在截面圆的圆心O在AB上,SO⊥平面$ABC,AC=\sqrt{3},BC=1$,若三棱锥的体积是$\frac{{\sqrt{3}}}{3}$,则球体的表面积是(  )
A.$\frac{25}{4}π$B.$\frac{25}{12}π$C.$\frac{125}{48}π$D.25π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sin(α$-\frac{π}{8}$)=$\frac{4}{5}$,则cos(α+$\frac{3π}{8}$)=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图是一个算法流程图,则输出的k的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=2a2lnx-x2,g(x)=-x2+2a3x+$\frac{{2{a^2}}}{x},({a>0})$.
(1)讨论函数f(x)在(1,e2)上零点的个数;
(2)若h(x)=f(x)-g(x)有两个不同的零点x1,x2,求证:x1•x2>2e2.(参考数据:e取2.8,ln2取0.7,$\sqrt{2}$取1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1+x}{e^x}$,g(x)=1-ax2
(1)若函数f(x)和g(x)的图象在x=1处的切线平行,求a的值;
(2)当x∈[0,1]时,不等式f(x)≤g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=ex+a+x,g(x)=ln(x+3)-4e-x-a,其中e为自然对数的底数,若存在实数x0,使得f(x0)-g(x0)=2成立,则实数a值为(  )
A.-2+ln2B.1+ln2C.-1-ln2D.2+ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=3+3cosθ\\ y=3sinθ\end{array}$,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=$\sqrt{3}$sinθ+cosθ,曲线C3的极坐标方程是θ=$\frac{π}{3}$.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.球面上有A,B,C三点,球心O到平面ABC的距离是球半径的$\frac{1}{3}$,且AB=2$\sqrt{2}$,AC⊥BC,则球O的表面积是(  )
A.81πB.C.$\frac{81π}{4}$D.$\frac{9π}{4}$

查看答案和解析>>

同步练习册答案