精英家教网 > 高中数学 > 题目详情
18.连掷两次骰子得到的点数分别为m和n,记向量$\overrightarrow a=(m,n)$与向量$\overrightarrow b=(1,-1)$的夹角为θ,则θ为锐角的概率是$\frac{5}{12}$.

分析 掷两次骰子分别得到的点数m,n,组成的向量(m,n)个数为36个,只需列举出满足条件的即可.

解答 解:后连掷两次骰子分别得到点数m,n,所组成的向量(m,n)的个数共有36种
由于向量(m,n)与向量(1,-1)的夹角θ为锐角,∴(m,n)•(1,-1)>0,
即m>n,满足题意的情况如下:
当m=2时,n=1;
当m=3时,n=1,2;
当m=4时,n=1,2,3;
当m=5时,n=1,2,3,4;
当m=6时,n=1,2,3,4,5;共有15种,
故所求事件的概率为:$\frac{15}{36}$=$\frac{5}{12}$,
故答案为:$\frac{5}{12}$.

点评 本题考查等可能事件的概率,得出m>n并正确列举是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数g(x)的导函数g'(x)=ex,且g(0)g'(1)=e,(其中e为自然对数的底数).若?x∈(0,+∞),使得不等式$g(x)<\frac{x-m+3}{{\sqrt{x}}}$成立,则实数m的取值范围是(  )
A.(-∞,1)B.(-∞,3)C.(3,+∞)D.(-∞,4-e)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.三棱锥P-ABC中,PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,则此三棱锥外接球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入的a=16,b=4,则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)证明:DC⊥AB;
(2)若点C在平面ABDE内的射影H,求CH与平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=ex-ax(e=2.71828…是自然对数的底数).
(I)若函数f(x)在区间(-e,-1)上是减函数,求a的取值范围;
(II)若函数F(x)=f(x)-(ex-2ax+2lnx+a)在区间(0,$\frac{1}{2}$)内无零点,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市高二年级学生进行数学竞赛,竞赛分为初赛和决赛,规定成绩在110分及110分以上的学生进入决赛,110分以下的学生则被淘汰,现随机抽取500名学生的初赛成绩按[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]做成频率副本直方图,如图所示:(假设成绩在频率分布直方图中各段是均匀分布的)
(1)求这500名学生中进入决赛的人数,及进入决赛学生的平均分(结果保留一位小数);
(2)在全市进入决赛的学生中,按照成绩[110,130),[130,150]分层抽取6人组进行决赛前培训,在从6人中选取2人担任组长,求组长中至少一名同学来自于高分组[130,150]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知{an}为等差数列,Sn为其前n项和,若a1=2,S3=15,则a6=(  )
A.17B.14C.13D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线l:x-y+2=0平行,则双曲线C的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案