精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的首项为7,且${a_n}=\frac{1}{2}{a_{n-1}}+3({n≥2})$,则a6=(  )
A.$\frac{193}{32}$B.$\frac{385}{64}$C.$\frac{161}{32}$D.$\frac{97}{16}$

分析 由已知数列递推式可得数列{an-6}是以1为首项,以$\frac{1}{2}$为公比的等比数列,求出等比数列的通项公式,可得an,则a6可求.

解答 解:由${a_n}=\frac{1}{2}{a_{n-1}}+3({n≥2})$,得${a}_{n}-6=\frac{1}{2}({a}_{n-1}-6)$(n≥2),
∵a1-6=7-6=1≠0,
∴$\frac{{a}_{n}-6}{{a}_{n-1}-6}=\frac{1}{2}$,即数列{an-6}是以1为首项,以$\frac{1}{2}$为公比的等比数列,
∴${a}_{n}-6=1×(\frac{1}{2})^{n-1}$,即${a}_{n}=(\frac{1}{2})^{n-1}+6$,
则${a}_{6}=(\frac{1}{2})^{5}+6=\frac{193}{32}$.
故选:A.

点评 本题考查数列递推式,考查了由数列递推式构造等比数列求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且对任意正整数n,都有3an=2Sn+3成立.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,平行四边形ABCD中,AC⊥BC,BC=AC=1,现将△DAC沿AC折起,得到三棱锥D-ABC(如图2),且DA⊥BC,点E为侧棱DC的中点.
(Ⅰ)求证:平面ABE⊥平面DBC;
(Ⅱ)求三棱锥E-ABC的体积;
(Ⅲ)在∠ACB的角平分线上是否存在点F,使得DF∥平面ABE?若存在,求DF的长;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,并且经过点M(-$\sqrt{2}$,1).
(1)求椭圆的标准方程;
(2)若直线l与圆O:x2+y2=1相切,与椭圆C相交于A,B两点,求△AOB的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于函数f(x),若关于x的方程f(2x2-4x-5)+sin($\frac{π}{3}$x+$\frac{π}{6}$)=0只有9个根,则这9个根之和为(  )
A.9B.18C.πD.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,BC=CC1,D是A1C1中点.
(Ⅰ)求证:A1B∥平面B1CD;
(Ⅱ)当三棱锥C-B1C1D体积最大时,求点B到平面B1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P,Q分别是抛物线C:x2=2py(p>0)与圆M:x2+(y-p)2=1上的动点,且|PQ|的最小值为2,则抛物线C的焦点到准线的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设抛物线y2=2px(p>0)焦点为F,准线为l,过焦点的直线分别交抛物线于A,B两点,分别过A,B作l的垂线,垂足C,D.若|AF|=2|BF|,且三角形CDF的面积为$\sqrt{2}$,则p的值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,D为BC中点,AD=3.
(1)当BC=4,AB=4时,求AC的长;
(2)当∠BAC=90°时,求△ABC周长的最大值;
(3)当∠BAD=45°,∠CAD=30°时,求△ABC的面积.

查看答案和解析>>

同步练习册答案