精英家教网 > 高中数学 > 题目详情
10.对于函数f(x),若关于x的方程f(2x2-4x-5)+sin($\frac{π}{3}$x+$\frac{π}{6}$)=0只有9个根,则这9个根之和为(  )
A.9B.18C.πD.0

分析 根据f(2x2-4x-5)与y=-sin($\frac{π}{3}x+\frac{π}{6}$)的对称性得出9个根关于直线x=1对称,从而得出9根之和.

解答 解:∵y=2x2-4x-5关于直线x=1对称,
∴f(2x2-4x-5)关于直线x=1对称,
由f(2x2-4x-5)+sin($\frac{π}{3}$x+$\frac{π}{6}$)=0得f(2x2-4x-5)=-sin($\frac{π}{3}$x+$\frac{π}{6}$),
∵y=-sin($\frac{π}{3}$x+$\frac{π}{6}$)也关于直线x=1对称,
方程f(2x2-4x-5)+sin($\frac{π}{3}$x+$\frac{π}{6}$)=0只有9个根,
∴其中1个根为x=1,其余8根两两关于直线x=1对称.
∴这9个根之和为1+2×4=9.
故选:A.

点评 本题考查了函数的零点与函数图象的关系,函数对称性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=2$\sqrt{3}$x上,则这个等边三角形的边长为(  )
A.6$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设复数z=1-i,则$\frac{3-4i}{z+1}$=2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x∈N+|3x-9<0},集合B={x|$\frac{1}{2}$<2x<8},集合C={1,2a-4}.
(1)求A∩B;
(2)若C⊆(A∩B),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}的首项为7,且${a_n}=\frac{1}{2}{a_{n-1}}+3({n≥2})$,则a6=(  )
A.$\frac{193}{32}$B.$\frac{385}{64}$C.$\frac{161}{32}$D.$\frac{97}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}满足an+12-an2=d(d为正常数,n∈N*),则称{an}为“等方差数列”.甲:数列{an}是等方差数列;乙:数列{an}是等差数列,则(  )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.连续两次抛掷一枚骰子,记录向上的点数,则向上的点数之差的绝对值为2的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{4}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正数x,y满足$x+4y+\frac{1}{x}+\frac{1}{y}=10$,则$\frac{1}{x}+\frac{1}{y}$的取值范围是[1,9].

查看答案和解析>>

同步练习册答案