精英家教网 > 高中数学 > 题目详情
15.若f(x)=$\frac{m(x-1)}{x+1}$-lnx在[1,+∞)单调递减,求m范围.

分析 先求f′(x),再由题意,可得f′(x)≤0在区间[1,+∞)上恒成立,解出即可.

解答 解:由于f(x)=$\frac{m(x-1)}{x+1}$-lnx=$\frac{m(x+1-2)}{x+1}-lnx$=m-$\frac{2m}{x+1}$-lnx,
则f′(x)=$\frac{2m}{(x+1)^{2}}$-$\frac{1}{x}$,
①当m=0时,f′(x)<0在区间(0,+∞)上恒成立,
则f(x)=$\frac{m(x-1)}{x+1}$-lnx在[1,+∞)单调递减,即m=0适合题意;
②当m≠0时,f′(x)=$\frac{2m}{(x+1)^{2}}$-$\frac{1}{x}$=$\frac{2mx-(x+1)^{2}}{(x+1)^{2}•x}$=$\frac{-{x}^{2}+2(m-1)x-1}{x(x+1)^{2}}$,
∵f(x)=$\frac{m(x-1)}{x+1}$-lnx在[1,+∞)单调递减,
∴f′(x)=$\frac{-{x}^{2}+2(m-1)x-1}{x(x+1)^{2}}$≤0即g(x)=-x2+2(m-1)x-1≤0在区间[1,+∞)上恒成立,
∴△≤0或$\left\{\begin{array}{l}△≥0\\ g(1)≤0\end{array}\right.$,解得0≤m≤2或m<0,∴m≤2,
∴m的取值范围是(-∞,2].

点评 本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.一列火车长500米,匀速在直线轨道上前进,当车尾经过某站台时,有人驾驶摩托车从站台追赶火车给火车司机送上急件,然后原速返回,返回中与车尾相遇时,此人发现这时正在离站台1000米处,假设摩托车车速不变,则摩托车从出发到站台共行驶了2000米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若y=f(x)的导函数的图象如图所示,则y=f(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若不等式x2-2ax-b2+4≤0恰有一解,则ab的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则向量 $\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知Rt△ABC中,直角边AC、BC的长度分别为20、15,动点P从C出发,沿三角形边界按C→B→A方向移动;动点Q从C出发,沿三角形边界按C→A→B方向移动,移动到两点相遇时为止,且点Q移动的速度是点P移动的速度的2倍.设动点P移动的距离为x,△CPQ的面积为y,试求y与x之间的函数关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某种产品的数量x(件)与其成本y(元)之间的函数关系可以近似用y=ax2+bx+c表示,其中a、b、c为待定常数,现有实际统计数据如下表:
 产品数量x(件) 6 10 20
 成本合计y(元) 1040 1600 3700
(1)试确定成本函数y=f(x);
(2)已知这种产品每件的销售价为200元,求利润p关于x的函数p=p(x);
(3)根据利润p关于x的函数p=p(x)确定盈亏转折时的产品数量(即产品数量等于多少时,能扭亏为盈或由盈转亏).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=x+$\frac{1}{x}$,x∈(0,+∞)的单调区间,并画出函数的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若等比数列{an}中,Sn=m3n+1,则实数m=-1.

查看答案和解析>>

同步练习册答案