精英家教网 > 高中数学 > 题目详情
设有关x的一元二次方程9x2+6ax-b2+4=0.
(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.
考点:几何概型,列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:(1)利用有序实数对表示基本事件,由古典概型公式解答;
(2)表示a,b满足的区域,求出面积,利用几何概型解答.
解答: 解:(1)由题意,知基本事件共有9个,可用有序实数对表示为(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),
其中第一个表示a的取值,第二个表示b的取值…(2分)
由方程9x2+6ax-b2+4=0的△=36a2-36(-b2+4)≥0⇒a2+b2≥4…(4分)
∴方程9x2+6ax-b2+4=0有实根包含7个基本事件,即(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).
∴此时方程9x2+6ax-b2+4=0有实根的概率为
7
9
…(6分)

(2)a,b的取值所构成的区域如图所示,其中0≤a≤3,0≤b≤2…(8分)
∴构成“方程9x2+6ax-b2+4=0有实根”这一事件的区域为{(a,b)|a2+b2≥4,0≤a≤3,0≤b≤2}(图中阴影部分).
∴此时所求概率为
2×3-
1
4
×π×22
2×3
=1-
π
6
…(13分)
点评:本题考查了古典概型、几何概型的概率公式的运用;关键是明确事件的属性,正确选择概率模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
y2
9
+x2
=1,过点P(
1
2
1
2
)
的直线与椭圆C相交于A,B两点,且弦AB被点P平分,则直线AB的方程为(  )
A、9x-y-4=0
B、9x+y-5=0
C、4x+2y-3=0
D、4x-2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinA=a,cosB=b,若a2+b2<1,则cosC=
 
(用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d均为实数,下列命题中正确的是(  )
A、a>b⇒ac2>bc2
B、a<b<0,c<d<0⇒ac<bd
C、a>b,ac<bc⇒c>0
D、a>b,c>d⇒a+c>b+d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
3
-
y2
b2
=1两个焦点为分别为F1,F2,过点F2的直线l与该双曲线的右支交于M,N两点,且△F1MN是以N为直角顶点的等腰直角三角形,则SF1NM为(  )
A、18
2
B、12
2
C、18
D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>0,y>0,则“x2+y2>1”是“x+y>1”的(  )
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx+cosωx(ω>0),如果存在实数x1,使得对任意的实数x,都有f(x1)≤f(x)≤f(x1+2015)成立,则ω的最小值为(  )
A、
2015
B、
π
2015
C、
1
2015
D、
π
4030

查看答案和解析>>

科目:高中数学 来源: 题型:

一个等比数列,它与首项为0,公差不为0的等差数列相应项相加以后得到新的数列:1,1,2,…,则相加以后的新数列前10项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不重合的平面α和β,给定下列条件:
①存在直线l,使得l⊥α,且l⊥β;
②存在直线l,使得l∥α,且l∥β;
③α内有不共线的三点到β的距离相等;
④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β;
其中,可以判定α与β平行的条件的是(  )
A、①③B、①④
C、①③④D、①②③④

查看答案和解析>>

同步练习册答案