精英家教网 > 高中数学 > 题目详情
12.已知函数y=|x|+$\frac{1}{|x-1|}$
(I)求f(x)的最小值;
(Ⅱ)方程f(x)-m=0有几个解.

分析 (I)根据绝对值不等式的性质,分别进行讨论,结合函数的单调性以及基本不等式进行求解即可求f(x)的最小值;
(Ⅱ)根据(Ⅰ)的条件,作出函数f(x)的图象,利用数形结合即可求方程f(x)-m=0有几个解.

解答
解:(I)当x>1时,f(x)=x+$\frac{1}{x-1}$=x-1+$\frac{1}{x-1}$+1≥2$\sqrt{(x-1)•\frac{1}{x-1}}$+1=2+1=3,当且仅当x-1=$\frac{1}{x-1}$,即x-1=1,x=2时取等号;
当x≤0时,f(x)=-x-$\frac{1}{x-1}$=-x+1-$\frac{1}{x-1}$-1=(1-x)+$\frac{1}{1-x}$-1≥2$\sqrt{(1-x)•\frac{1}{1-x}}$-1=2-1=1,当且仅当1-x=-$\frac{1}{x-1}$,即1-x=1,x=0时取等号;
当0<x<1时,f(x)=x-$\frac{1}{x-1}$,则函数f(x)为增函数,
当x=0时,f(0)=1,当x→1时,→+∞,即此时f(x)>1
综上函数的f(x)的最小值是1;
(Ⅱ)由方程f(x)-m=0的f(x)=m,
由(Ⅰ)作出函数f(x)的图象如图,
则当m<1时,f(x)=m无解,
当m=1时,f(x)=m有1个解,
当1<m<3时,f(x)=m有2个解
当m=3时,f(x)=m有3个解,
当m>3时,f(x)=m有4个解.

点评 本题主要考查函数与方程的应用,根据绝对值的应用进行分类讨论,利用数形结合以及基本不等式的性质是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=(1,0)$,$\overrightarrow b=(1,2)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.1B.2C.(1,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对边分别为a,b,c,已知$\frac{sinA}{sinB+sinC}=1-\frac{a-b}{a-c}$.
(Ⅰ)若b=$\sqrt{3}$,当△ABC周长取最大值时,求△ABC的面积;
(Ⅱ)设$\overrightarrow m=({sinA,1}),\overrightarrow n=({6cosB,cos2A}),求\overrightarrow m•\overrightarrow n$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式x2+ax+1≥0对一切x∈(0,1]恒成立,则a的最小值为(  )
A.0B.-2C.-$\frac{5}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直三棱柱ABC-A1B1C1中的侧棱长为4cm,在底面△ABC中,AC=BC=2cm,∠ACB=90°,E为AB的中点,CF⊥AB1垂足为F
(Ⅰ)求证CE⊥AB1
(Ⅱ)求CE与AB1的距离;
(Ⅲ)求截面AB1C与侧面ABB1A1所成二面角C-AB1-B的正切值;
(Ⅳ)求三棱锥C-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=3sinx-5cosx的最大值是(  )
A.-4B.-2C.4D.$\sqrt{34}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某单位在对一个长800m、宽600m的草坪进行绿化时,是这样想的:中间为矩形绿草坪,四周是等宽的花坛,如图所示,若要保证绿草坪的面积不小于总面积的二分之一.试确定花坛宽度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}中,a1=1,an+1=an+$\sqrt{{a}_{n}}$+$\frac{1}{4}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1,F2分别为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,若点P是以F1F2为直径的圆与C右支的-个交点,F1P交C于另一点Q,且|PQ|=2|QF1|.则C的渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{2}$xC.y=±$\sqrt{2}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

同步练习册答案