精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow a=(1,0)$,$\overrightarrow b=(1,2)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.1B.2C.(1,0)D.(0,2)

分析 求出$\overrightarrow{a}•\overrightarrow{b}$,代入向量的投影公式计算.

解答 解:$\overrightarrow{a}•\overrightarrow{b}$=1,$|\overrightarrow{a}|$=1,|$\overrightarrow{b}$|=$\sqrt{5}$,
∴向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影$\frac{a•\overrightarrow{b}}{|\overrightarrow{a}|}$=1.
故选:A.

点评 本题考查了平面向量的投影公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知$z=\frac{2-i}{1+i}-{i^{2016}}$(i是虚数单位),则|z|=(  )
A.2B.4C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.x=2是x2-4x+4=0的必要不充分条件
B.在△ABC中,三边a,b,c所对的角分别为A,B,C,若acosA=bcosB,则该三角形△ABC为等腰三角形
C.命题“若x2<4,则-2<x<2”的逆否命题为“若x2≥4,则x≥2或x≤-2”
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+φ)(ω>0)图象的两条相邻的对称轴的距离为$\frac{π}{3}$.若角φ的终边经过点P(1,-2),则f($\frac{7π}{3}$)等于(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示程序图,若N=7时,则输出的结果S的值为(  )
A.$\frac{8}{7}$B.$\frac{6}{5}$C.$\frac{7}{8}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC的面积为$\sqrt{3}$,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC内角A,B,C的对边分别是a,b,c,cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$,且acosB+bcosA=2,则△ABC的面积的最大值为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线C:$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差数列,O为坐标原点,则点O到直线PF2的距离为(  )
A.$\frac{6\sqrt{14}}{5}$B.$\frac{12\sqrt{14}}{5}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=|x|+$\frac{1}{|x-1|}$
(I)求f(x)的最小值;
(Ⅱ)方程f(x)-m=0有几个解.

查看答案和解析>>

同步练习册答案