精英家教网 > 高中数学 > 题目详情
1.已知α∈R,则函数f(x)=1-sin2(x+α)+cos(x+α)sin(x+α)的最大值为$\frac{\sqrt{2}+1}{2}$.

分析 化简f(x)为正弦型函数,根据正弦函数的图象与性质即可求出f(x)的最大值.

解答 解:函数f(x)=1-sin2(x+α)+cos(x+α)sin(x+α)
=1-$\frac{1-cos2(x+α)}{2}$+$\frac{1}{2}$sin2(x+α)
=$\frac{1}{2}$+$\frac{1}{2}$sin2(x+α)+$\frac{1}{2}$cos2(x+α)
=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin[2(x+α)+$\frac{π}{4}$]
=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2x+2α+$\frac{π}{4}$);
当2x+2α+$\frac{π}{4}$=$\frac{π}{2}$+2kπ,k∈Z,
即x=-α+$\frac{π}{4}$+kπ,k∈Z时;
f(x)取得最大值为$\frac{\sqrt{2}+1}{2}$.
故答案为:$\frac{\sqrt{2}+1}{2}$.

点评 本题考查了三角函数的化简以及正弦函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.对于?x∈[${\frac{1}{2}$,+∞)都有2x+a≥$\sqrt{2x-1}$恒成立,则a的取值范围为(  )
A.$({-∞,-\frac{1}{4}}]$B.$[{-\frac{1}{4},+∞})$C.$({-∞,-\frac{3}{4}}]$D.$[{-\frac{3}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求使1+2+3+4+5+…+n>1000成立的最小自然数n的值,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等腰梯形ABCD中,已知AB∥DC,AC与BD交于点M,AB=2CD=4.若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1,则cos∠BMC(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{17}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=$\frac{1}{4}$log23,b=$\frac{1}{2}$,c=$\frac{1}{2}$log53,则(  )
A.c<a<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若cosθ-3sinθ=0,则tan(θ-$\frac{π}{4}$)=(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和为Sn,直线y=x-2$\sqrt{2}$与圆x2+y2=2an+2交于An,Bn(n∈N*)两点,且$S{\;}_n=\frac{1}{4}{|{{A_n}{B_n}}|^2}$.若a1+2a2+3a3+…+nan<λan2+2对任意n∈N*恒成立,则实数λ的取值范围是(  )
A.(0,+∞)B.$(\frac{1}{2},+∞)$C.[0,+∞)D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}{y≤2x}\\{2x-5y-8≤0}\\{y≤4-x}\end{array}\right.$,则z=x+2y的最小值为(  )
A.$\frac{20}{3}$B.4C.-6D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2017年春晚分会场之一是凉山西昌,电视播出后,通过网络对凉山分会场的表演进行了调查.调查分三类人群进行,参加了网络调查的观众们的看法情况如下:
 观众对凉山分会场表演的看法 非常好 好
 中国人且非四川(人数比例) $\frac{1}{2}$ $\frac{1}{2}$
 四川人(非凉山)(人数比例)$\frac{2}{3}$  $\frac{1}{3}$
凉山人(人数比例) $\frac{3}{4}$ $\frac{1}{4}$
(1)从这三类人群中各选一个人,求恰好有2人认为“非常好”的概率(用比例作为相应概率);
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案