分析 (1)a1=2sinθ,由$\sqrt{4-{{a}_{1}}^{2}}$+a22=2及三角恒等变换公式可得a2=2sin$\frac{θ}{2}$,同理求得a3=2sin$\frac{θ}{4}$;从而写出an=2sin$\frac{θ}{{2}^{n-1}}$;
(2)①利用三角函数的定义证明;
②化简a1+a2+…+an=2sin$\frac{π}{4}$+2sin$\frac{π}{8}$+2sin$\frac{π}{16}$+…+2sin$\frac{π}{4•{2}^{n-1}}$,从而利用放缩法证明.
解答
解:(1)a1=2sinθ,
∵$\sqrt{4-{{a}_{1}}^{2}}$+a22=2,
即2cosθ+a22=2,
故a22=2-2cosθ=4sin2$\frac{θ}{2}$,
故a2=2sin$\frac{θ}{2}$,
同理可得,a3=2sin$\frac{θ}{4}$;
故an=2sin$\frac{θ}{{2}^{n-1}}$;
(2)①证明:如右图,
由三角函数的定义知,sinx=MP,x=$\widehat{AP}$,
∵MP<$\widehat{AP}$,
∴sinx<x;
②证明:∵θ=$\frac{π}{4}$,
∴a1+a2+…+an=2sin$\frac{π}{4}$+2sin$\frac{π}{8}$+2sin$\frac{π}{16}$+…+2sin$\frac{π}{4•{2}^{n-1}}$
=2(sin$\frac{π}{4}$+sin$\frac{π}{8}$+sin$\frac{π}{16}$+…+sin$\frac{π}{4•{2}^{n-1}}$)
<2($\frac{π}{4}$+$\frac{π}{8}$+$\frac{π}{16}$+…+$\frac{π}{4•{2}^{n-1}}$)
=2$\frac{\frac{π}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=π(1-$\frac{1}{{2}^{n}}$)<π.
点评 本题考查了数列递推关系的应用及数形结合的思想应用,同时考查了转化思想与归纳法的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -2 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com