精英家教网 > 高中数学 > 题目详情

设函数f(x)=msinx+cosx(x∈R)的图象经过点(,1).
(1)求f(x)的解析式,并求函数的最小正周期.
(2)若f(α+)=且α∈(0,),求f(2α-)的值.

(1) f(x)= sin(x+)  T=2π   (2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.
(1)求函数f(x)的表达式;
(2)若sinα+f(α)=,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin2sin.
(1)在△ABC中,若sin C=2sin AB为锐角且有f(B)=,求角ABC
(2)若f(x)(x>0)的图象与直线y交点的横坐标由小到大依次是x1x2,…,xn,求数列{xn}的前2n项和,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sinsin(+).
(1)求函数f(x)在[-π,0]上的单调区间.
(2)已知角α满足α∈(0,),2f(2α)+4f(-2α)=1,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调递增区间;
(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin+cosxg(x)=2sin2.
(1)若α是第一象限角,且f(α)=.求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2)求函数的单调递增区间;
(3)当时,求函数的最大值和最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角α的终边经过点P(x,-2),且cosα=,求sinα和tanα.

查看答案和解析>>

同步练习册答案