精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足|
a
|=1,|
b
|=
3
,且(3
a
-2
b
a
,则
a
b
的夹角为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:通过向量的垂直转化为向量的数量积的运算,求出角的大小即可.
解答: 解:(3
a
-2
b
a
,可得(3
a
-2
b
a
=0
,即3|
a
|2-2
a
b
=0,
a
b
=
3
2
=3|
a
|2=|
a
|•|
b
|cos<
a
b

cos
a
b
=
3
2
3
=
3
2
,∴
a
b
=
π
6

故选:A.
点评:本题考查向量的数量积的运算,向量的垂直体积的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-x+
k
2
x2,(k>0,且k≠1).
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调减区间;
(Ⅲ)当k=0时,设f(x)在区间[0,n](n∈N*)上的最小值为bn,令an=ln(1+n)-bn
求证:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4..a2n
2an+1
-1,(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x|x|+bx+c,给出四个命题:上述四个命题中所有正确的命题序号是
 

①c=0时,有f(-x)=-f(x)成立;
②b=0,c>0时,函数y=f(x)只有一个零点;
③y=f(x)的图象关于点(0,c)对称;
④函数y=f(x),至多有两个不同零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则ξ的数学期望Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
4
)(ω>0)图象的相邻两条对称轴之间的距离等于
π
2
,则f(
π
8
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

假设在时间间隔T内的任何时刻,两条不相关的短信机会均等地进入同一台手机.若这两条短信进入手机的间隔时间不大于t(0<t<T)称手机受到干扰,则手机受到干扰的概率是(  )
A、(
t
T
2
B、(1-
t
T
2
C、1-(
t
T
2
D、1-(1-
t
T
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数函数y=sin(3x+
π
3
)cos(x-
π
6
)+cos(3x+
π
3
)sin(x-
π
6
)的图象的一条对称轴的方程是(  )
A、x=-
π
24
B、x=-
π
12
C、x=
π
12
D、x=
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中正确的命题序号是(  )
①向量
a
b
共线的充分必要条件是存在唯一实数λ,使
a
b
成立.
②函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称.
③ysinθ-cosθ=2y(θ∈[0,π])成立的充分必要条件是|2y|≤
1+y2

④已知U为全集,则x∉A∩B的充分条件是x∈(∁UA)∩(∁UB).
A、②④B、①②C、①③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
(1)命题“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)关于x的不等式a<sin2x+
2
sin2x
恒成立,则a的取值范围是a<3;
(3)对于函数f(x)=
ax
1+|x|
(a∈R且a≠0)
,则有当a=1时,?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点;
(4)
1
0
1-x2
dx≤
e
1
1
x
dx

(5)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常数,又s+2t的最小值是1,则m+3n=7.
其中正确的个数是
 

查看答案和解析>>

同步练习册答案