精英家教网 > 高中数学 > 题目详情
设函数f(x)=x|x|+bx+c,给出四个命题:上述四个命题中所有正确的命题序号是
 

①c=0时,有f(-x)=-f(x)成立;
②b=0,c>0时,函数y=f(x)只有一个零点;
③y=f(x)的图象关于点(0,c)对称;
④函数y=f(x),至多有两个不同零点.
考点:命题的真假判断与应用
专题:综合题,函数的性质及应用
分析:将c=0代入,判断f(-x)=-f(x)是否成立,可判断①;将b=0代入分析函数的单调性及值域,可判断②;根据函数的对称变换,求出函数关于(0,c)对称后的解析式,与原函数解析进行比较后,可判断③;举出反例b=-2,c=0时,函数有三个零点,可判断④
解答: 解:①当c=0时,f(x)=x|x|+bx,f(-x)=-(x|x|+bx)=-f(x),故①正确;
②f(x)=x|x|在R上为增函数,值域也为R,当b=0,c>0时,f(x)=x|x|+c在R上递增,值域也为R,有且只有一个零点,故②正确;
③由f(x)=x|x|+bx+c关于(0,c)对称的函数解析式为2c-f(-x)=2c-(-x|x|-bx+c)=x|x|+bx+c,故③正确;
④当b=-2,c=0时,f(x)=x|x|-2x有-2,0,2三个零点,故④错误;
故所有正确的命题序号是①②③.
故答案为:①②③.
点评:本题以命题的真假判断为载体,考查了函数的奇偶性,零点,对称性,熟练掌握函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),离心率e=
2
2
,A,B是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)若直线OA与OB的斜率乘积kOA•kOB=-
1
2
,动点P满足
OP
=
OA
OB
,(其中实数λ为常数).问是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标,若不存在,说明理由;
(Ⅲ)若点A在第一象限,且点A,B关于原点对称,点A在x轴上的射影为C,连接BC并延长交椭圆于点D.证明:AB⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-x)ex-1.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设g(x)=
f(x)
x
,x>-1且x≠0,证明:g(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1和Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为
3
的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|>|BF|,则
|BD|
|OF|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈[-1,3],则任取一点x0∈[-1,3],使得f(x0)≥0的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从等腰直角△ABC的底边BC上任取一点D,则△ABD为锐角三角形的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,|
b
|=
3
,且(3
a
-2
b
a
,则
a
b
的夹角为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,…n中这n个数中取m(m,n∈N*,3≤m≤n)个数组成递增等差数列,所有可能的递增等差数列的个数记为f(n,m).
(Ⅰ)当n=5,m=3时,写出所有可能的递增等差数列及f(5,3)的值;
(Ⅱ)求f(100,10);
(Ⅲ)求证:f(n,m)>
(n-m)(n+1)
2(m-1)

查看答案和解析>>

同步练习册答案