精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|(x-2)(x+3)<0},x∈R},B={x|1≤x≤3,x∈R },则A∩B=(  )
A.[1,2)B.[1,2]C.(2,3]D.[2.3]

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:因为A={x|(x-2)(x+3)<0}}=(-3,2),B={x|1≤x≤3}=[1,3],
所以A∩B=[1,2),
故选:A

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知a<0,解关于x的不等式ax2-(a-2)x-2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校计划新建一个占地面积为600m2的停放自行车的矩形场地,在矩形场地中间保留宽分别为2m和3m的十字型通道,如图所示,当矩形用地的边长各为多少时,自行车停放地(阴影部分)的占地面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A,B是抛物线y2=4x上异于顶点O的两个点,直线OA与直线OB的斜率之积为定值-4,F为抛物线的焦点,△AOF,△BOF的面积分别为S1,S2,则S12+S22的最小值为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x与圆(x-2)2+y2=1的两个交点关于直线x+y+d=0对称,则Sn=2n-n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的焦点是F1(-2$\sqrt{2}$,0}),F2(2$\sqrt{2}$,0),其上的动点P满足|PF1|+|PF2|=4$\sqrt{3}$.点O为坐标原点,椭圆C的下顶点为R.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点(0,1)且斜率为k的直线l2交椭圆C于M,N两点,试证明:无论k取何值,$\overrightarrow{RM}$•$\overrightarrow{RN}$恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了解性别对该维度测评结果的影响,采取分层抽样的方法从高一年级抽取了45名学生进行测评,得到下面的频数统计表:
表1:男生                                           
等级优秀合格尚待改进
频数153y
表2:女生
等级优秀合格尚待改进
频数15x5
( I)从表2的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
( II)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”?
男生女生总计
优秀
非优秀
总计
附:
P(K2≥k00.1000.0500.010
k02.7063.8416.635
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲、乙两人抢答竞赛题,甲答对的概率为$\frac{1}{5}$,乙答对的概率为$\frac{1}{4}$,则两人恰有一人答对的概率为(  )
A.$\frac{7}{20}$B.$\frac{12}{20}$C.$\frac{1}{20}$D.$\frac{2}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知,x,y∈R,则“|x+y|=|x|+|y|”是“xy>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案