精英家教网 > 高中数学 > 题目详情
7.若复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,则z1•z2=(  )
A.-2B.2C.-2iD.2i

分析 利用复数的运算法则与共轭复数的定义、几何意义即可得出.

解答 解:∵复数z1、z2在复平面内的对应点关于虚轴对称,z1=1+i,
∴z2=-1+i.
∴z1•z2=-(1+i)(1-i)=-2.
故选:A

点评 本题考查了复数的运算法则与共轭复数的定义、几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)与f'(x)的图象如图所示,则函数$g(x)=\frac{f(x)}{e^x}$的单调递增区间为(  )
A.(0,4)B.$({-∞,1}),({\frac{4}{3},4})$C.(0,1),(4,+∞)D.(-∞,0),(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量|$\overrightarrow{AB}$|=2,|$\overrightarrow{CD}$|=1,且|$\overrightarrow{AB}$-2$\overrightarrow{CD}$|=2$\sqrt{3}$,则向量$\overrightarrow{AB}$和$\overrightarrow{CD}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0),其部分图象如图所示,点P,Q分别为图象上相邻的最高点与最低点,R是图象与x轴的交点,若P点的横坐标为$\frac{1}{3}$,f($\frac{1}{3}$)=$\sqrt{3}$,PR⊥QR,则函数f(x)的解析式可以是(  )
A.$f(x)=\sqrt{3}sin(\frac{π}{2}x+\frac{π}{3})$B.$f(x)=\sqrt{3}sin(\frac{π}{2}x-\frac{π}{6})$
C.$f(x)=\sqrt{3}sin(\frac{2π}{3}x+\frac{5π}{18})$D.$f(x)=\sqrt{3}sin(πx+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{{{4^x}+a}}{{{2^{x+1}}}}$,h(x)=2f(x)-ax-b.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若f(x)为奇函数,且h(x)在[-1,1]有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:
(1)甲同学没有加入“楹联社”;
(2)乙同学没有加入“汉服社”;
(3)加入“楹联社”的那名同学不在高二年级;
(4)加入“汉服社”的那名同学在高一年级;
(5)乙同学不在高三年级.
试问:丙同学所在的社团是(  )
A.楹联社B.书法社
C.汉服社D.条件不足无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各数中,是纯虚数的是(  )
A.i2B.πC.1+$\sqrt{3}$iD.(1+$\sqrt{3}$)i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若点P是以F1,F2为焦点的双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)上一点,PF1⊥PF2,且|PF1|=2|PF2|,则此双曲线的标准方程是(  )
A.x2-$\frac{{y}^{2}}{4}$=1B.x2-$\frac{{y}^{2}}{3}$=1C.x2-$\frac{{y}^{2}}{5}$=1D.x2-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|log2x≥0},B={x|log2(x-1)≤2},则集合A∩B=(  )
A.{1,2,3}B.{1,3}C.(1,3]D.(1,5]

查看答案和解析>>

同步练习册答案