精英家教网 > 高中数学 > 题目详情
12.设集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}则下列判断正确的是(  )
A.P?Q?RB.P?R?QC.Q?P?RD.R?P?Q

分析 先确定P?Q,排除C,D,再确定Q?R,即可得出结论.

解答 解:集合P={(x,y)||x|+|y|≤1,x∈R,y∈R}表示以(±1,0),(0,±1)为顶点的正方形,
Q={(x,y)|x2+y2≤1,x∈R,y∈R}表示以(0,0)为圆心,1为半径的圆面(包括圆的边界),所以P?Q,排除C,D;
x4+y2≤1中,以$\sqrt{x}$代替x,可得x2+y2≤1,∴Q⊆R.
x=$\frac{1}{2}$,由x2+y2≤1,可得-$\frac{\sqrt{3}}{2}$≤y≤$\frac{\sqrt{3}}{2}$,由x4+y2≤1可得-$\frac{\sqrt{15}}{4}$≤y≤$\frac{\sqrt{15}}{4}$,∴Q?R
∴P?Q?R,
故选:A.

点评 本题考查集合的包含关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AD=DC=AA1=2,AB=4,E、F、G分别是棱AA1、AD、AB的中点.
(Ⅰ) 求证:EF⊥B1D1
(Ⅱ) 求证:EF∥平面GCC1
(Ⅲ) 求二面角B-GC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一个可任意放置、里面空间是正方体的容器中装有一定量的水,有下列结论:
①水面可以是正三角形;
②水面可以是正六边形;
③水面不可能是五边形;
④当水面是四边形时,水的形状是棱柱.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知(x+1)2(x+$\frac{1}{{x}^{3}}$)n的展开式中没有x2项,n∈N*,且5≤n≤8,则n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在正方体ABCD-A1B1C1D1中,AB=1,点P为BD1上一点,平面α满足:点P∈平面α,直BD1⊥平面α,设以B为顶点,以连接平面α与正方体棱的交点为底面的几何体的体积为V,则V的最大值为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{3}{16}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某商场2015年一月份到十二月份月销售额呈现先下降后上升的趋势,下列四个函数中,能较准确反映商场月销售额f(x)与月份x关系且满足f(1)=8,f(3)=2的函数为(  )
A.f(x)=20×($\frac{1}{2}$)xB.f(x)=-6log3x+8C.f(x)=x2-12x+19D.f(x)=x2-7x+14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,点M、N分别在PD、PC上,2PN=NC,PM=MD
(1)求证:PC⊥平面AMN;
(2)求四面体P-ABN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.8个人排成一排,若要求甲、乙、丙三人必须站在一起,则不同的排法有(  )
A.${A}_{8}^{8}$种B.3${A}_{7}^{7}$种C.3${A}_{6}^{6}$种D.${A}_{3}^{3}$${A}_{6}^{6}$种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$为非零向量,$\overrightarrow{b}$=(3,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求$\overrightarrow{a}$的单位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$).

查看答案和解析>>

同步练习册答案