精英家教网 > 高中数学 > 题目详情
1.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E,F分别是A1C1,BC的中点.
(1)证明:C1F∥平面ABE;
(2)设P是BE的中点,求三棱锥P-B1C1F的体积.

分析 (1)根据线面平行的判定定理即可证明:C1F∥平面ABE;
(2)根据三棱锥的体积公式即可求三棱锥P-B1C1F的体积.

解答 (1)证明:取AC的中点M,连接C1M,FM,
在△ABC中,FM∥AB,
而FM?面ABE,∴FM∥平面ABE,
在矩形ACC1A1中,E,M都是中点,
∴C1M∥AE,
而C1M?平面ABE,∴C1M∥平面ABE,
∵C1M∩FM=M,
∴平面FC1M?平面ABE
∵C1F?平面FC1M,
∴C1F∥平面ABE,
(2)取B1C1的中点H,连接EH,
则EH∥AB,且EH=$\frac{1}{2}$AB=$\sqrt{3}$FM,
∵AB⊥平面BB1C1C,
∴EH⊥平面BB1C1C,
∵P是BE的中点,
∴${V}_{P-{B}_{1}{C}_{1}F}=\frac{1}{2}{V}_{E-{B}_{1}{C}_{1}F}$=$\frac{1}{2}×\frac{1}{3}•{S}_{△{B}_{1}{C}_{1}F}•EH$=$\frac{1}{2}×\frac{1}{3}×2×\sqrt{3}=\frac{\sqrt{3}}{3}$.

点评 本题主要考查线面平行的判定以及空间几何体的体积的计算,根据相应的判定定理以及三棱锥的体积公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知点O是四边形ABCD所在平面外任意一点,且$\overrightarrow{OD}$=2$\overrightarrow{OA}$+x$\overrightarrow{OB}$-y$\overrightarrow{OC}$(x,y∈R),则x2+y2的最小值为(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,a2=2,an+2=an+1-an,试写出a3,a4,a5,a6,a7,a8,你发现数列{an}具有怎样的规律?你能否求出该数列中的第2014项是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若正数a,b满足log2a=log5b=1g(a+b),则$\frac{1}{a}$$+\frac{1}{b}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.方程3x+3-x=2的解集是{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{x^2}{a}$-$\frac{y^2}{4}$=1(a>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点为F,点F在渐近线上的射影为M,O为坐标原点,则$\overrightarrow{OF}$•$\overrightarrow{MF}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-x-2≤0,x∈R},B={x|lg(x+1)<1,x∈Z},则A∩B=(  )
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某同学在研究函数f(x)=$\frac{x}{1+|x|}$(x∈R)时,得到一下四个结论:
①f(x)的值域是(-1,1);
②对任意x∈R,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
③若规定f1(x)=f(x),fn+1(x)=f(fn(x)),则对任意的n∈N*,fn(x)=$\frac{x}{1+n|x|}$;
④对任意的x∈[-1,1],若函数f(x)≤t2-2at+$\frac{1}{2}$恒成立,则当a∈[-1,1]时,t≤-2或t≥2,
其中正确的结论是①②③(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x≥4},B={x|-1≤2x-1≤0},则∁RA∩B=(  )
A.(4,+∞)B.[0,$\frac{1}{2}$]C.($\frac{1}{2}$,4)D.(1,4]

查看答案和解析>>

同步练习册答案